Beispiel #1
0
    def run(self):

        ndv = NDV

        nbar = self.tile.datasets[DatasetType.ARG25]

        _log.info("Processing tile [%s]", nbar.path)

        # Apply PQA if specified

        pqa = None

        if self.mask_pqa_apply and DatasetType.PQ25 in self.tile.datasets:
            pqa = self.tile.datasets[DatasetType.PQ25]

        mask = None

        log_mem("Before get PQA mask")

        if pqa:
            mask = get_mask_pqa(pqa, self.mask_pqa_mask)

        data = get_dataset_data_masked(nbar, mask=mask, ndv=ndv)

        log_mem("After get data (masked)")

        metadata = get_dataset_metadata(nbar)

        data = calculate_tassel_cap_index(data, coefficients=TCI_COEFFICIENTS[nbar.satellite][TasselCapIndex.WETNESS])

        raster_create(self.output().path, [data], metadata.transform, metadata.projection, numpy.nan, gdal.GDT_Float32)
Beispiel #2
0
    def create_water_tile(self, tile):
        arg = tile.datasets[DatasetType.ARG25]
        pqa = tile.datasets[DatasetType.PQ25]

        _log.info("ARG tile [%s]", arg)
        _log.info("PQ tile [%s]", pqa)

        filename = os.path.basename(arg.path)
        filename = filename.replace("NBAR", "WETNESS")
        filename = filename.replace(".vrt", ".tif")
        filename = os.path.join(self.output_directory, filename)

        metadata = get_dataset_metadata(arg)

        data = get_dataset_data_with_pq(arg, Ls57Arg25Bands, pqa)

        # Calculate TCI Wetness

        tci = calculate_tassel_cap_index(data,
                                         coefficients=TCI_COEFFICIENTS[arg.satellite][TasselCapIndex.WETNESS])

        _log.info("TCI shape is %s | min = %s | max = %s", numpy.shape(tci), tci.min(), tci.max())
        raster_create(filename,
                      [tci],
                      metadata.transform, metadata.projection, numpy.nan, gdal.GDT_Float32)
Beispiel #3
0
def classifier(arg25_dataset, pq25_dataset):
    """
    Runs the classifier designed by SF.
    """
    # Get the metadata
    md = get_dataset_metadata(arg25_dataset)
    cols, rows = md.shape

    # Read the data and mask pixels via the PQ dataset
    data = get_dataset_data_with_pq(arg25_dataset, pq25_dataset)

    # Get the wetness coefficients and calculate
    coef = TCI_COEFFICIENTS[arg25_dataset.satellite][TasselCapIndex.WETNESS]
    wetness = calculate_tassel_cap_index(data, coef)

    # NDVI
    ndvi = calculate_ndvi(data[arg25_dataset.bands.RED],
                          data[arg25_dataset.bands.NEAR_INFRARED],
                          output_ndv=numpy.nan)

    # Dump the reflectance data, the classifier only needs tc_wetness and ndvi
    del data

    # Allocate the result
    classified = numpy.zeros((rows, cols), dtype='uint8')

    # Water
    r1 = wetness > 0
    classified[r1] = 1
    _tmp = ~r1

    #r2 = _tmp & ((wetness >= -250) & (wetness < 0))
    r2 = (wetness >= -250) & (wetness < 0)
    r3 = ndvi <= 0.3
    #_tmp2 = _tmp & r2 & ~r3
    _tmp2 = _tmp & r2

    # non-veg
    classified[_tmp2 & r3] = 2
    _tmp3 = _tmp2 & ~r3

    r4 = ndvi <= 0.45

    # saltmarsh
    classified[_tmp3 & r4] = 3
    _tmp2 = _tmp3 & ~r4

    r5 = ndvi <= 0.6

    # mangrove/saltmarsh
    classified[_tmp2 & r5] = 4

    # mangrove
    classified[_tmp2 & ~r5] = 5

    # finished rhs of r2
    _tmp2 = _tmp & ~r2

    r6 = wetness < -750
    r7 = ndvi >= 0.3
    _tmp3 = _tmp2 & r6

    # saltmarsh
    classified[_tmp3 & r7] = 3

    # non-veg
    classified[_tmp3 & ~r7] = 2

    r8 = ndvi <= 0.3
    _tmp3 = _tmp2 & ~r6

    # non-veg
    classified[_tmp3 & r8] = 2

    r9 = ndvi <= 0.45
    _tmp2 = _tmp3 & ~r8

    # saltmarsh
    classified[_tmp2 & r9] = 3

    r10 = ndvi <= 0.6
    _tmp3 = _tmp2 & ~r9

    # mangrove-saltmarsh
    classified[_tmp3 & r10] = 4

    # mangrove
    classified[_tmp3 & ~r10] = 5

    # set any nulls
    valid = numpy.isfinite(ndvi)
    classified[~valid] = 0

    return classified
Beispiel #4
0
def classifier(arg25_dataset, pq25_dataset):
    """
    Runs the classifier designed by SF.
    """
    # Get the metadata
    md = get_dataset_metadata(arg25_dataset)
    cols, rows = md.shape

    # Read the data and mask pixels via the PQ dataset
    data = get_dataset_data_with_pq(arg25_dataset, pq25_dataset)

    # Get the wetness coefficients and calculate
    coef = TCI_COEFFICIENTS[arg25_dataset.satellite][TasselCapIndex.WETNESS]
    wetness = calculate_tassel_cap_index(data, coef)

    # NDVI
    ndvi = calculate_ndvi(data[arg25_dataset.bands.RED],
                          data[arg25_dataset.bands.NEAR_INFRARED],
                          output_ndv=numpy.nan)

    # Dump the reflectance data, the classifier only needs tc_wetness and ndvi
    del data

    # Allocate the result
    classified = numpy.zeros((rows,cols), dtype='uint8')

    # Water
    r1 = wetness > 0
    classified[r1] = 1
    _tmp = ~r1

    #r2 = _tmp & ((wetness >= -250) & (wetness < 0))
    r2 = (wetness >= -250) & (wetness < 0)
    r3 = ndvi <= 0.3
    #_tmp2 = _tmp & r2 & ~r3
    _tmp2 = _tmp & r2

    # non-veg
    classified[_tmp2 & r3] = 2
    _tmp3 = _tmp2 & ~r3

    r4 = ndvi <= 0.45

    # saltmarsh
    classified[_tmp3 & r4] = 3
    _tmp2 = _tmp3 & ~r4

    r5 = ndvi <= 0.6

    # mangrove/saltmarsh
    classified[_tmp2 & r5] = 4

    # mangrove
    classified[_tmp2 & ~r5] = 5

    # finished rhs of r2
    _tmp2 = _tmp & ~r2

    r6 = wetness < -750
    r7 = ndvi >= 0.3
    _tmp3 = _tmp2 & r6

    # saltmarsh
    classified[_tmp3 & r7] = 3

    # non-veg
    classified[_tmp3 & ~r7] = 2

    r8 = ndvi <= 0.3
    _tmp3 = _tmp2 & ~r6

    # non-veg
    classified[_tmp3 & r8] = 2

    r9 = ndvi <= 0.45
    _tmp2 = _tmp3 & ~r8

    # saltmarsh
    classified[_tmp2 & r9] = 3

    r10 = ndvi <= 0.6
    _tmp3 = _tmp2 & ~r9

    # mangrove-saltmarsh
    classified[_tmp3 & r10] = 4

    # mangrove
    classified[_tmp3 & ~r10] = 5

    # set any nulls
    valid = numpy.isfinite(ndvi)
    classified[~valid] = 0

    return classified