Beispiel #1
0
def main():

    args = argParser()

    cifarLoader = CifarLoader(args)
    net = args.model()
    print('The log is recorded in ')
    print(net.logFile.name)

    if os.path.isfile('model.pth'):
        net.load_state_dict(torch.load('model.pth'))

    criterion = net.criterion()
    optimizer = net.optimizer()

    for epoch in range(args.epochs):  # loop over the dataset multiple times
        net.adjust_learning_rate(optimizer, epoch, args)
        train(net, cifarLoader, optimizer, criterion, epoch)
        if epoch % 10 == 0:  # Comment out this part if you want a faster training
            test(net, cifarLoader, 'Train')
            test(net, cifarLoader, 'Test')

    torch.save(net.state_dict(), 'model.pth')
    print('The log is recorded in ')
    print(net.logFile.name)
Beispiel #2
0
def main():

    args = argParser()

    cifarLoader = CifarLoader(args)
    if not os.path.exists(args.logdir):
        os.makedirs(args.logdir)

    device = torch.device("cuda" if args.cuda else "cpu")
    net = args.model(args.logdir, device).to(device)
    print('The log is recorded in ')
    print(net.logFile.name)

    criterion = net.criterion().to(device)
    optimizer = net.optimizer()

    for epoch in trange(args.epochs):  # loop over the dataset multiple times
        net.adjust_learning_rate(optimizer, epoch, args)
        train(net, cifarLoader, optimizer, criterion, epoch, device)
        if epoch % 10 == 0:  # Comment out this part if you want a faster training
            test(net, cifarLoader, device, 'Train')
            test(net, cifarLoader, device, 'Test')

    print('The log is recorded in ')
    print(net.logFile.name)
Beispiel #3
0
def main():

    args = argParser()

    cifarLoader = CifarLoader(args)
    net = args.model()
    net.to(device)
    print('The log is recorded in ')
    print(net.logFile.name)

    criterion = net.criterion()
    optimizer = net.optimizer()

    for epoch in range(args.epochs):  # loop over the dataset multiple times
        net.adjust_learning_rate(optimizer, epoch, args)
        train(net, cifarLoader, optimizer, criterion, epoch)
        if epoch % 1 == 0:  # Comment out this part if you want a faster training
            test(net, cifarLoader, 'Train')
            test(net, cifarLoader, 'Test')

    print('The log is recorded in ')
    print(net.logFile.name)
Beispiel #4
0
def main():
    # cuda = torch.device('cuda')
    # torch.set_default_tensor_type('torch.cuda.FloatTensor')
    args = argParser()

    cifarLoader = CifarLoader(args)
    net = args.model()
    # net.cuda()
    print('The log is recorded in ')
    print(net.logFile.name)

    criterion = net.criterion()
    optimizer = net.optimizer()

    for epoch in range(args.epochs):  # loop over the dataset multiple times
        net.adjust_learning_rate(optimizer, epoch, args)
        train(net, cifarLoader, optimizer, criterion, epoch)
        if epoch % 1 == 0:  # Comment out this part if you want a faster training
            test(net, cifarLoader, 'Train')
            test(net, cifarLoader, 'Test')

    print('The log is recorded in ')
    print(net.logFile.name)
Beispiel #5
0
def main():

    args = argParser()

    use_cuda = args.cuda and torch.cuda.is_available()
    device = torch.device('cuda' if use_cuda else 'cpu')

    cifarLoader = CifarLoader(args)
    net = args.model().to(device)
    print('The log is recorded in ')
    print(net.logFile.name)

    criterion = net.criterion(args.loss)
    optimizer = net.optimizer()

    for epoch in range(args.epochs):  # loop over the dataset multiple times
        net.adjust_learning_rate(optimizer, epoch, args)
        train(net, cifarLoader, device, optimizer, criterion, epoch)
        if epoch % 1 == 0:  # Comment out this part if you want a faster training
            test(net, cifarLoader, device, 'Train')
            test(net, cifarLoader, device, 'Test')

    print('The log is recorded in ')
    print(net.logFile.name)