def __call__(self, sample):

        # Fixed range of scales
        if self.resolutions is None:
            return sample

        elems = list(sample.keys())

        for elem in elems:

            if 'meta' in elem or 'bbox' in elem or ('extreme_points_coord' in elem and elem not in self.resolutions):
                continue

            if elem in self.resolutions:
                if self.resolutions[elem] is None:
                    continue
                if isinstance(sample[elem], list):
                    if sample[elem][0].ndim == 3:
                        output_size = np.append(self.resolutions[elem], [3, len(sample[elem])])
                    else:
                        output_size = np.append(self.resolutions[elem], len(sample[elem]))
                    tmp = sample[elem]
                    sample[elem] = np.zeros(output_size, dtype=np.float32)
                    for ii, crop in enumerate(tmp):
                        if self.flagvals is None:
                            sample[elem][..., ii] = utils.fixed_resize(crop, self.resolutions[elem])
                        else:
                            sample[elem][..., ii] = utils.fixed_resize(crop, self.resolutions[elem], flagval=self.flagvals[elem])
                else:
                    if self.flagvals is None:
                        sample[elem] = utils.fixed_resize(sample[elem], self.resolutions[elem])
                    else:
                        sample[elem] = utils.fixed_resize(sample[elem], self.resolutions[elem], flagval=self.flagvals[elem])

        return sample
    def __call__(self, sample):

        elems = list(sample.keys())

        for elem in elems:
            if self.flagvals is None:
                sample[elem] = utils.fixed_resize(sample[elem], self.size)
            else:
                sample[elem] = utils.fixed_resize(sample[elem],
                                                  self.size,
                                                  flagval=self.flagvals[elem])

        return sample
    def __call__(self, sample):
        i, j, h, w = self.get_params(sample['image'], self.scale, self.ratio)
        elems = list(sample.keys())

        for elem in elems:
            if sample[elem].ndim == 2:
                sample[elem] = sample[elem][i:i + h, j:j + w]
            else:
                sample[elem] = sample[elem][i:i + h, j:j + w, :]
            if self.flagvals is None:
                sample[elem] = utils.fixed_resize(sample[elem], self.size)
            else:
                sample[elem] = utils.fixed_resize(sample[elem], self.size,
                                                  flagval=self.flagvals[elem])

        return sample
Beispiel #4
0
def main():
    global image, output
    cv2.namedWindow('draw', flags=cv2.WINDOW_NORMAL)
    cv2.setMouseCallback('draw', interactive_drawing)

    image_idx = 0
    while (1):
        cv2.imshow('draw', image)
        k = cv2.waitKey(1) & 0xFF
        if k != 255:
            # print(k)
            pass
        if k == 100:  # D
            cv2.imwrite('./' + str(image_idx) + 'out.png', image)
        if k == 115:
            global left, right, up, down
            left = 0xFFF
            right = 0
            up = 0xFFF
            down = 0
            drawing = False  # true if mouse is pressed
            image = cv2.imread(image_list[image_idx])
            image = utils.fixed_resize(image, (450, 450)).astype(np.uint8)
            sp = image.shape
            w = sp[0]
            h = sp[1]
            output = np.zeros((w, h, 3), np.uint8)
            while (1):
                cv2.imshow('draw', image)
                k = cv2.waitKey(1) & 0xFF
                if k == 32:
                    break
                if k == 27:
                    image = cv2.imread(image_list[image_idx])
                    image = utils.fixed_resize(image,
                                               (450, 450)).astype(np.uint8)
                    output = np.zeros((w, h, 3), np.uint8)

            tmp = (output[:, :, 0] > 0).astype(np.uint8)
            tmp_ = deepcopy(tmp)
            fill_mask = np.ones((tmp.shape[0] + 2, tmp.shape[1] + 2))
            fill_mask[1:-1, 1:-1] = tmp_
            fill_mask = fill_mask.astype(np.uint8)
            cv2.floodFill(tmp_, fill_mask, (int(
                (left + right) / 2), int((up + down) / 2)), 5)
            tmp_ = tmp_.astype(np.int8)

            output = cv2.resize(output, img_shape)

            tmp_ = tmp_.astype(np.int8)
            tmp_[tmp_ == 5] = -1  # pixel inside bounding box
            tmp_[tmp_ == 0] = 1  # pixel on and outside bounding box

            tmp = (tmp == 0).astype(np.uint8)

            dismap = cv2.distanceTransform(
                tmp, cv2.DIST_L2, cv2.DIST_MASK_PRECISE
            )  # compute distance inside and outside bounding box
            dismap = tmp_ * dismap + 128

            dismap[dismap > 255] = 255
            dismap[dismap < 0] = 0
            dismap = dismap

            dismap = utils.fixed_resize(dismap, (450, 450)).astype(np.uint8)

            dismap = np.expand_dims(dismap, axis=-1)

            image = image[:, :, ::-1]  # change to rgb
            merge_input = np.concatenate((image, dismap),
                                         axis=2).astype(np.float32)
            inputs = torch.from_numpy(
                merge_input.transpose((2, 0, 1))[np.newaxis, ...])

            # Run a forward pass
            inputs = inputs.to(device)
            outputs = net.forward(inputs)
            outputs = upsample(outputs,
                               size=(450, 450),
                               mode='bilinear',
                               align_corners=True)
            outputs = outputs.to(torch.device('cpu'))

            prediction = np.transpose(outputs.data.numpy()[0, ...], (1, 2, 0))
            prediction = 1 / (1 + np.exp(-prediction))
            prediction = np.squeeze(prediction)
            prediction[prediction > thres] = 255
            prediction[prediction <= thres] = 0

            prediction = np.expand_dims(prediction, axis=-1).astype(np.uint8)
            image = image[:, :, ::-1]  # change to bgr
            display_mask = np.concatenate([
                np.zeros_like(prediction),
                np.zeros_like(prediction), prediction
            ],
                                          axis=-1)
            image = cv2.addWeighted(image, 0.9, display_mask, 0.5, 0.1)

        if k == 99:
            break

        if k == 110:
            image_idx += 1
            if image_idx >= len(image_list):
                print('Already the last image. Starting from the beginning.')
                image_idx = 0
            image = cv2.imread(image_list[image_idx])
            image = utils.fixed_resize(image, (450, 450)).astype(np.uint8)
            sp = image.shape
            w = sp[0]
            h = sp[1]
            output = np.zeros((w, h, 3), np.uint8)

        if k == 112:
            image_idx -= 1
            if image_idx < 0:
                print('Reached the first image. Starting from the end.')
                image_idx = len(image_list) - 1
            image = cv2.imread(image_list[image_idx])
            image = utils.fixed_resize(image, (450, 450)).astype(np.uint8)
            sp = image.shape
            w = sp[0]
            h = sp[1]
            output = np.zeros((w, h, 3), np.uint8)

    cv2.destroyAllWindows()
Beispiel #5
0
from torch.nn.functional import upsample
from dataloaders import utils
import networks.deeplab_resnet as resnet

from glob import glob
from copy import deepcopy

drawing = False
start = False

# TODO: import test image path
image_list = glob(os.path.join('ims/', '*.' + 'jpg'))
image = cv2.imread(image_list[0])
img_shape = (450, 450)
image = utils.fixed_resize(image, img_shape).astype(np.uint8)

w = img_shape[0]
h = img_shape[1]
output = np.zeros((w, h, 3), np.uint8)
thres = 0.8

left = 0xFFF
right = 0
up = 0xFFF
down = 0

gpu_id = 0
device = torch.device("cuda:" +
                      str(gpu_id) if torch.cuda.is_available() else "cpu")
Beispiel #6
0
                                                'deepgc_pascal_epoch-99.pth'),
                                   map_location=lambda storage, loc: storage)

net.load_state_dict(state_dict_checkpoint)
net.eval()
net.to(device)

files = os.listdir(img_dir)
imgs = [im for im in files if '_gt.png' not in im]

for im_name in imgs:

    im_path = os.path.join(img_dir, im_name)
    im = np.array(Image.open(im_path))
    img_shape = (450, 450)
    image = utils.fixed_resize(im, img_shape).astype(np.uint8)

    gt = Image.open(im_path.replace('.png', '_gt.png')).convert('L')
    gt = np.array(gt)

    # image = np.array(im)
    gt_bb = utils.get_bbox(gt)

    # output = cv2.resize(output, img_shape)

    # dismap = utils.compute_dismap(gt, gt_bb)
    dismap, tmp = utils.distance_map(gt, v=0)

    dismap[dismap > 255] = 255
    dismap[dismap < 0] = 0
    dismap = dismap