Beispiel #1
0
    def test_02_second_plugin(self):
        # Login
        self.login('*****@*****.**')

        self.open(reverse('workflow:index'))

        # GO TO THE WORKFLOW PAGE
        WebDriverWait(self.selenium,
                      10).until(EC.title_is('OnTask :: Workflows'))
        self.assertIn('New workflow', self.selenium.page_source)
        self.assertIn('Import workflow', self.selenium.page_source)

        # Open the workflow
        wf_link = self.selenium.find_element_by_link_text('Plugin test')
        wf_link.click()
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located((By.ID, 'column-table_previous')))

        # Open the transform page
        self.selenium.find_element_by_link_text("Dataops").click()
        self.selenium.find_element_by_link_text("Transform").click()
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located(
                (By.ID, 'transform-table_previous')))

        # Click in the second plugin
        self.selenium.find_element_by_xpath(
            "//table[@id='transform-table']/tbody/tr[5]/td[7]/div/a").click()
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located((By.NAME, 'csrfmiddlewaretoken')))

        # Provide the execution data
        self.selenium.find_element_by_id("id_merge_key").click()
        Select(self.selenium.find_element_by_id(
            "id_merge_key")).select_by_visible_text("email")
        # Submit the execution
        self.selenium.find_element_by_name("Submit").click()
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located((By.ID, 'plugin-execution-report')))

        # Done. Click continue.
        self.selenium.find_element_by_xpath(
            "(//button[@type='button'])[2]").click()
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located((By.ID, 'column-table_previous')))

        # Assert the content of the dataframe
        wflow = Workflow.objects.get(name='Plugin test')
        df = pandas_db.load_from_db(wflow.id)
        self.assertTrue('RESULT 3' in set(df.columns))
        self.assertTrue('RESULT 4' in set(df.columns))
        self.assertTrue(df['RESULT 3'].equals(df['A1'] + df['A2']))
        self.assertTrue(df['RESULT 4'].equals(df['A1'] - df['A2']))

        # End of session
        self.logout()
Beispiel #2
0
    def put(self, request, pk, format=None):
        # Try to retrieve the wflow to check for permissions
        self.get_object(pk)
        # Get the dst_df
        dst_df = pandas_db.load_from_db(pk)

        serializer = self.serializer_class(data=request.data)
        if not serializer.is_valid():
            return Response(serializer.errors,
                            status=status.HTTP_400_BAD_REQUEST)

        # Check that the parameters are correct
        how = serializer.validated_data['how']
        if how == '' or how not in ['left', 'right', 'outer', 'inner']:
            raise APIException('how must be one of left, right, outer '
                               'or inner')

        left_on = serializer.validated_data['left_on']
        if not ops.is_unique_column(dst_df[left_on]):
            raise APIException('column' + left_on +
                               'does not contain a unique key.')

        # Operation has been accepted by the serializer
        src_df = serializer.validated_data['src_df']

        right_on = serializer.validated_data['right_on']
        if right_on not in list(src_df.columns):
            raise APIException('column ' + right_on +
                               ' not found in data frame')

        if not ops.is_unique_column(src_df[right_on]):
            raise APIException('column' + right_on +
                               'does not contain a unique key.')

        merge_info = {
            'how_merge': how,
            'dst_selected_key': left_on,
            'src_selected_key': right_on,
            'initial_column_names': list(src_df.columns),
            'rename_column_names': list(src_df.columns),
            'columns_to_upload': [True] * len(list(src_df.columns)),
        }

        # Ready to perform the MERGE
        try:
            merge_result = ops.perform_dataframe_upload_merge(
                pk, dst_df, src_df, merge_info)
        except Exception:
            raise APIException('Unable to perform merge operation')

        if merge_result:
            # Something went wrong, raise the exception
            raise APIException(merge_result)

        # Merge went through.
        return Response(serializer.data, status=status.HTTP_201_CREATED)
Beispiel #3
0
 def get(self, request, pk, format=None):
     # Try to retrieve the wflow to check for permissions
     self.get_object(pk, user=self.request.user)
     serializer = self.serializer_class({
         'src_df': pandas_db.load_from_db(pk),
         'how': '',
         'left_on': '',
         'right_on': ''
     })
     return Response(serializer.data)
Beispiel #4
0
    def test_table_pandas_merge_to_outer_NaN(self):
        # Get the only workflow in the fixture
        workflow = Workflow.objects.all()[0]

        # Drop the column with booleans because the data type is lost
        workflow_delete_column(
            workflow, Column.objects.get(workflow=workflow, name='registered'))

        # Transform new table into string
        r_df = pd.DataFrame(self.src_df2)

        # Load the df from the db
        df = pandas_db.load_from_db(workflow.id)
        new_df = pd.merge(df, r_df, how="outer", left_on="sid", right_on="sid")

        # Get the data through the API
        response = self.client.put(reverse(
            'table:api_pmerge', kwargs={'pk': workflow.id}), {
                "src_df": serializers.df_to_string(r_df),
                "how": "outer",
                "left_on": "sid",
                "right_on": "sid"
            },
                                   format='json')

        # Get the new workflow
        workflow = Workflow.objects.all()[0]

        # Result should have three rows as the initial DF
        self.assertEqual(workflow.nrows, 4)
        self.assertEqual(workflow.ncols, 8)

        # Load the df from the db
        df = pandas_db.load_from_db(workflow.id)

        # Compare both elements and check wf df consistency
        self.compare_tables(df, new_df)

        # Check for df/wf consistency
        self.assertTrue(pandas_db.check_wf_df(workflow))
Beispiel #5
0
    def df_update_inner(self):

        df_dst, df_src = self.parse_data_frames()

        self.merge_info['how_merge'] = 'inner'

        result = perform_dataframe_upload_merge(self.pk, df_dst, df_src,
                                                self.merge_info)

        # Result must be correct (None)
        self.assertEquals(result, None)

        result_df = pandas_db.load_from_db(self.pk)
Beispiel #6
0
def reposition_column_and_update_df(workflow, column, to_idx):
    """

    :param workflow: Workflow object for which the repositioning is done
    :param column: column object to relocate
    :param to_idx: Destination index of the given column
    :return: Content reflected in the DB
    """

    df = pandas_db.load_from_db(workflow.id)
    reposition_columns(workflow, column.position, to_idx)
    column.position = to_idx
    column.save()
    ops.store_dataframe_in_db(df, workflow.id)
Beispiel #7
0
    def test_table_pandas_get(self):
        # Get the only workflow in the fixture
        workflow = Workflow.objects.all()[0]

        # Get the data through the API
        response = self.client.get(
            reverse('table:api_pops', kwargs={'pk': workflow.id}))

        # Transform the response into a data frame
        r_df = serializers.string_to_df(response.data['data_frame'])

        # Load the df from the db
        df = pandas_db.load_from_db(workflow.id)

        # Compare both elements
        self.compare_tables(r_df, df)
Beispiel #8
0
    def test_table_JSON_get(self):
        # Get the only workflow in the fixture
        workflow = Workflow.objects.all()[0]

        # Get the data through the API
        response = self.client.get(
            reverse('table:api_ops', kwargs={'pk': workflow.id}))

        # Transform the response into a data frame
        r_df = pd.DataFrame(response.data['data_frame'])
        r_df = ops.detect_datetime_columns(r_df)

        # Load the df from the db
        df = pandas_db.load_from_db(workflow.id)

        # Compare both elements
        self.compare_tables(r_df, df)
Beispiel #9
0
def stat_column(request, pk):
    """
    Render the page with stats and visualizations for the given column
    The page includes the following visualizations:
      First row: quartile information (only for integer and double)
      V1. Box plot. Only for columns of type integer and double.
      V2. Histogram. For columns of type integer, double, string, boolean

    :param request: HTTP request
    :param pk: primary key of the column
    :return: Render the page
    """

    workflow = get_workflow(request)
    if not workflow:
        return redirect('workflow:index')

    # Get the column
    try:
        column = Column.objects.get(pk=pk, workflow=workflow)
    except ObjectDoesNotExist:
        return redirect('workflow:index')

    # Get the dataframe
    df = pandas_db.load_from_db(workflow.id)

    # Extract the data to show at the top of the page
    stat_data = pandas_db.get_column_stats_from_df(df[column.name])

    vis_scripts = []
    visualizations = get_column_visualisations(
        column,
        df[[column.name]],
        vis_scripts,
        context={
            'style': 'max-width:800px; max-height:450px;display:inline-block;'
        })

    return render(
        request, 'table/stat_column.html', {
            'column': column,
            'stat_data': stat_data,
            'vis_scripts': vis_scripts,
            'visualizations': [v.html_content for v in visualizations]
        })
    def test_tracking(self):
        # Repeat the checks two times to test if they are accumulating
        for idx in range(1, 3):
            # Iterate over the tracking items
            for trck in self.trck_tokens:
                self.client.get(reverse('trck') + '?v=' + trck)

            # Get the workflow and the data frame
            workflow = Workflow.objects.get(name=self.wflow_name)
            df = pandas_db.load_from_db(workflow.id)

            # Check that the results have been updated in the DB (to 1)
            for uemail in [
                    x[1] for x in test.user_info if x[1].startswith('student')
            ]:
                self.assertEqual(
                    int(df.loc[df['email'] == uemail,
                               'EmailRead_1'].values[0]), idx)
Beispiel #11
0
    def test_merge_inner(self):

        # Get the workflow
        self.workflow = Workflow.objects.all()[0]

        # Parse the source data frame
        df_dst, df_src = self.parse_data_frames()

        self.merge_info['how_merge'] = 'inner'

        result = perform_dataframe_upload_merge(self.workflow.id, df_dst,
                                                df_src, self.merge_info)

        # Load again the workflow data frame
        df_dst = load_from_db(self.workflow.id)

        # Result must be correct (None)
        self.assertEquals(result, None)
Beispiel #12
0
    def test_table_pandas_merge_get(self):
        # Get the only workflow in the fixture
        workflow = Workflow.objects.all()[0]

        # Get the data through the API
        response = self.client.get(
            reverse('table:api_pmerge', kwargs={'pk': workflow.id}))

        # Transform new table into string
        r_df = serializers.string_to_df(response.data['src_df'])

        # Load the df from the db
        df = pandas_db.load_from_db(workflow.id)

        # Compare both elements and check wf df consistency
        self.compare_tables(r_df, df)
        workflow = Workflow.objects.all()[0]
        self.assertTrue(pandas_db.check_wf_df(workflow))
def forwards(apps, schema_editor):
    if schema_editor.connection.alias != 'default':
        return
    # Traverse the workflows and verify that the columns are in the same
    # order than the columns in the workflow
    for w in Workflow.objects.all():
        if not pandas_db.is_wf_table_in_db(w):
            continue

        df = pandas_db.load_from_db(w.id)

        if len(df.columns) != w.ncols:
            raise Exception('Inconsistent number of columns')

        df_columns = list(df.columns)
        for c in w.columns.all():
            c.position = df_columns.index(c.name) + 1
            c.save()
Beispiel #14
0
    def test_02_second_plugin(self):
        # Login
        self.login('*****@*****.**')

        # GO TO THE WORKFLOW PAGE
        self.access_workflow_from_home_page('Plugin test')

        # Open the transform page
        self.go_to_transform()


        # Click in the second plugin
        # Click in the first plugin
        element = self.search_table_row_by_string('transform-table',
                                                  1,
                                                  'test_plugin_2')
        element.find_element_by_link_text('Run').click()
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located((By.NAME, 'csrfmiddlewaretoken'))
        )

        # Provide the execution data
        self.selenium.find_element_by_id("id_merge_key").click()
        Select(self.selenium.find_element_by_id(
            "id_merge_key"
        )).select_by_visible_text("email")
        # Submit the execution
        self.selenium.find_element_by_name("Submit").click()
        self.wait_for_page(element_id='plugin-execution-report')

        # Done. Click continue.
        self.selenium.find_element_by_link_text('Continue').click()
        self.wait_for_datatable('column-table_previous')

        # Assert the content of the dataframe
        wflow = Workflow.objects.get(name='Plugin test')
        df = pandas_db.load_from_db(wflow.id)
        self.assertTrue('RESULT 3' in set(df.columns))
        self.assertTrue('RESULT 4' in set(df.columns))
        self.assertTrue(df['RESULT 3'].equals(df['A1'] + df['A2']))
        self.assertTrue(df['RESULT 4'].equals(df['A1'] - df['A2']))

        # End of session
        self.logout()
Beispiel #15
0
    def parse_data_frames(self):
        # Parse the two CSV strings and return as data frames

        if self.workflow:
            # Get the workflow data frame
            df_dst = load_from_db(self.workflow.id)
        else:
            df_dst = pandas_db.load_df_from_csvfile(
                StringIO.StringIO(self.csv1), 0, 0)

        df_src = pandas_db.load_df_from_csvfile(StringIO.StringIO(self.csv2),
                                                0, 0)

        # Fix the merge_info fields.
        self.merge_info['initial_column_names'] = list(df_src.columns)
        self.merge_info['rename_column_names'] = list(df_src.columns)
        self.merge_info['columns_to_upload'] = list(df_src.columns)

        return df_dst, df_src
Beispiel #16
0
    def test_04_merge_right(self):
        self.template_merge('right')

        # Assert the content of the dataframe
        wflow = Workflow.objects.get(name=self.wf_name)
        df = pandas_db.load_from_db(wflow.id)

        self.assertTrue('key' in set(df.columns))
        self.assertTrue('key2' in set(df.columns))
        self.assertTrue('text3' in set(df.columns))
        self.assertTrue('double3' in set(df.columns))
        self.assertTrue('bool3' in set(df.columns))
        self.assertTrue('date3' in set(df.columns))

        assert pandas_db.check_wf_df(
            Workflow.objects.get(name='Testing Merge'))

        # End of session
        self.logout()
Beispiel #17
0
def clone_column(column, new_workflow=None, new_name=None):
    """
    Function that given a column clones it and changes workflow and name
    :param column: Object to clone
    :param new_workflow: New workflow object to point
    :param new_name: New name
    :return: Cloned object
    """
    # Store the old object name before squashing it
    old_name = column.name
    old_position = column.position

    # Clone
    column.id = None

    # Update some of the fields
    if new_name:
        column.name = new_name
    if new_workflow:
        column.workflow = new_workflow

    # Set column at the end
    column.position = column.workflow.ncols + 1
    column.save()

    # Update the number of columns in the workflow
    column.workflow.ncols += 1
    column.workflow.save()

    # Reposition the columns above the one being deleted
    reposition_columns(column.workflow, column.position, old_position + 1)

    # Set the new column in the right location
    column.position = old_position + 1
    column.save()

    # Add the column to the table and update it.
    data_frame = pandas_db.load_from_db(column.workflow.id)
    data_frame[new_name] = data_frame[old_name]
    ops.store_dataframe_in_db(data_frame, column.workflow.id)

    return column
Beispiel #18
0
    def test_05_merge_outer_fail(self):
        self.template_merge('outer')

        # Assert that the error is at the top of the page
        self.assertIn(
            'Merge operation produced a result without any key columns.',
            self.selenium.page_source)

        # Assert the content of the dataframe
        wflow = Workflow.objects.get(name=self.wf_name)
        df = pandas_db.load_from_db(wflow.id)

        self.assertTrue('key' in set(df.columns))
        self.assertTrue('key2' not in set(df.columns))
        self.assertTrue('text3' not in set(df.columns))
        self.assertTrue('double3' not in set(df.columns))
        self.assertTrue('bool3' not in set(df.columns))
        self.assertTrue('date3' not in set(df.columns))

        assert pandas_db.check_wf_df(
            Workflow.objects.get(name='Testing Merge'))

        # End of session
        self.logout()
Beispiel #19
0
def workflow_restrict_column(workflow, column):
    """
    Given a workflow and a column, modifies the column so that only the
    values already present are allowed for future updates.

    :param workflow: Workflow object
    :param column: Column object to restrict
    :return: String with error or None if correct
    """

    # Load the data frame
    data_frame = pandas_db.load_from_db(column.workflow.id)

    cat_values = set(data_frame[column.name].dropna())
    if not cat_values:
        # Column has no meaningful values. Nothing to do.
        return _('Column has no meaningful values')

    # Set categories
    column.set_categories(list(cat_values))
    column.save()

    # Correct execution
    return None
Beispiel #20
0
    def test_table_pandas_update(self):
        # Get the only workflow in the fixture
        workflow = Workflow.objects.all()[0]

        # Transform new table into string
        r_df = pd.DataFrame(self.new_table)
        r_df = ops.detect_datetime_columns(r_df)

        # Upload a new table
        response = self.client.put(
            reverse('table:api_pops', kwargs={'pk': workflow.id}),
            {'data_frame': serializers.df_to_string(r_df)},
            format='json')

        # Load the df from the db
        df = pandas_db.load_from_db(workflow.id)

        # Compare both elements
        self.compare_tables(r_df, df)

        # Refresh wflow (has been updated) and check that the rest of the
        # information is correct
        workflow = Workflow.objects.get(pk=workflow.id)
        self.assertTrue(pandas_db.check_wf_df(workflow))
    def create(self, validated_data, **kwargs):

        # Process first the used_columns field to get a sense of how many
        # columns, their type how many of them new, etc. etc.
        new_columns = []
        for citem in validated_data['used_columns']:
            cname = citem.get('name', None)
            if not cname:
                raise Exception('Incorrect column name {0}.'.format(cname))
            col = Column.objects.filter(workflow=self.context['workflow'],
                                        name=cname).first()
            if not col:
                # new column
                if citem['is_key']:
                    raise Exception('New action cannot have non-existing key '
                                    'column {0}'.format(cname))

                # Accummulate the new columns just in case we have to undo
                # the changes
                new_columns.append(citem)
                continue

            # existing column
            if col.data_type != citem.get('data_type', None) or \
                    col.is_key != citem['is_key'] or \
                    set(col.categories) != set(citem['categories']):
                # The two columns are different
                raise Exception(
                    'Imported column {0} is different from existing '
                    'one.'.format(cname))
        new_column_names = [x['name'] for x in new_columns]

        action_obj = None
        try:
            # used_columns has been verified.
            action_obj = Action(
                workflow=self.context['workflow'],
                name=validated_data['name'],
                description_text=validated_data['description_text'],
                is_out=validated_data['is_out'],
                serve_enabled=validated_data['serve_enabled'],
                active_from=validated_data['active_from'],
                active_to=validated_data['active_to'],
                content=validated_data.get('content', ''))

            action_obj.save()

            if new_columns:
                # There are some new columns that need to be created
                column_data = ColumnSerializer(data=new_columns,
                                               many=True,
                                               context=self.context)

                # And save its content
                if column_data.is_valid():
                    column_data.save()
                    workflow = self.context['workflow']
                    df = pandas_db.load_from_db(self.context['workflow'].id)
                    if df is None:
                        # If there is no data frame, there is no point on
                        # adding columns.
                        Column.objects.filter(
                            workflow=self.context['workflow'],
                            name__in=new_column_names).delete()
                        action_obj.delete()
                        raise Exception('Action cannot be imported with and '
                                        'empty data table')

                    for col in Column.objects.filter(
                            workflow=workflow, name__in=new_column_names):
                        # Add the column with the initial value
                        df = ops.data_frame_add_column(df, col, None)

                        # Update the column position
                        col.position = len(df.columns)
                        col.save()

                    # Store the df to DB
                    ops.store_dataframe_in_db(df, workflow.id)
                else:
                    raise Exception('Unable to create column data')

            # Load the conditions pointing to the action
            condition_data = ConditionSerializer(
                data=validated_data.get('conditions', []),
                many=True,
                context={'action': action_obj})
            if condition_data.is_valid():
                condition_data.save()
            else:
                raise Exception('Unable to create condition information')

            # Update the condition variables for each formula if not present
            for condition in action_obj.conditions.all():
                if condition.columns.all().count() == 0:
                    col_names = get_variables(condition.formula)
                    # Add the corresponding columns to the condition
                    condition.columns.set(
                        self.context['workflow'].columns.filter(
                            name__in=col_names))

            # Load the columns field
            columns = ColumnNameSerializer(data=validated_data['columns'],
                                           many=True,
                                           required=False,
                                           context=self.context)
            if columns.is_valid():
                for citem in columns.data:
                    column = action_obj.workflow.columns.get(
                        name=citem['name'])
                    action_obj.columns.add(column)
                columns.save()
            else:
                raise Exception('Unable to create columns field')
        except Exception:
            if action_obj and action_obj.id:
                action_obj.delete()
            Column.objects.filter(workflow=self.context['workflow'],
                                  name__in=new_column_names).delete()
            raise

        return action_obj
Beispiel #22
0
    def data_frame(self):
        # Function used by the serializer to access the data frame in the DB
        if self.data_frame_table_name:
            return pandas_db.load_from_db(self.id)

        return None
Beispiel #23
0
def get_row_visualisations(request, view_id=None):
    # If there is no workflow object, go back to the index
    workflow = get_workflow(request)
    if not workflow:
        return redirect('workflow:index')

    # If the workflow has no data, something went wrong, go back to the
    # workflow details page
    if workflow.nrows == 0:
        return redirect('worflow:detail', workflow.id)

    # Get the pair key,value to fetch the row from the table
    update_key = request.GET.get('key', None)
    update_val = request.GET.get('val', None)

    if not update_key or not update_val:
        # Malformed request
        return render(request, 'error.html',
                      {'message': _('Unable to visualize table row')})

    # If a view is given, filter the columns
    columns_to_view = workflow.columns.all()
    column_names = None
    if view_id:
        try:
            view = View.objects.get(pk=view_id)
        except ObjectDoesNotExist:
            # View not found. Redirect to workflow detail
            return redirect('workflow:detail', workflow.id)
        columns_to_view = view.columns.all()
        column_names = [c.name for c in columns_to_view]

        df = pandas_db.load_from_db(workflow.id, column_names, view.formula)
    else:
        # No view given, fetch the entire data frame
        df = pandas_db.load_from_db(workflow.id)

    # Get the rows from the table
    row = pandas_db.execute_select_on_table(workflow.id, [update_key],
                                            [update_val], column_names)[0]

    vis_scripts = []
    visualizations = []
    idx = -1
    context = {'style': 'width:400px; height:225px;'}
    for column in columns_to_view:
        idx += 1

        # Skip primary keys (no point to represent any of them)
        if column.is_key:
            continue

        # Add the title and surrounding container
        visualizations.append('<h4>' + column.name + '</h4>')
        # If all values are empty, no need to proceed
        if all([not x for x in df[column.name]]):
            visualizations.append("<p>" + _('No values in this column') +
                                  "</p><hr/>")
            continue

        if row[idx] is None or row[idx] == '':
            visualizations.append(
                '<p class="alert-warning">' + \
                _('No value for this student in this column</p>')
            )

        visualizations.append('<div style="display: inline-flex;">')

        v = get_column_visualisations(column,
                                      df[[column.name]],
                                      vis_scripts=vis_scripts,
                                      id='column_{0}'.format(idx),
                                      single_val=row[idx],
                                      context=context)

        visualizations.extend([x.html_content for x in v])
        visualizations.append('</div><hr/>')

    return render(
        request, 'table/stat_row.html', {
            'value': update_val,
            'vis_scripts': vis_scripts,
            'visualizations': visualizations
        })
Beispiel #24
0
def get_view_visualisations(request, view_id=None):
    """
    Function that returns the visualisations for a view (or the entire table)
    :param request: HTTP request
    :param view_id: View id being used
    :return: HTTP response

    TODO: Review this function and get_row_visualisation because there is a
    significant overlap.
    """
    # If there is no workflow object, go back to the index
    workflow = get_workflow(request)
    if not workflow:
        return redirect('workflow:index')

    # If the workflow has no data, something went wrong, go back to the
    # workflow details page
    if workflow.nrows == 0:
        messages.error(request,
                       _('Unable to provide visualisation without data.'))
        return redirect('worflow:detail', workflow.id)

    # If a view is given, filter the columns
    columns_to_view = workflow.columns.all()
    formula = None
    view = None
    if view_id:
        try:
            view = View.objects.get(pk=view_id)
        except ObjectDoesNotExist:
            # View not found. Redirect to workflow detail
            return redirect('workflow:detail', workflow.id)
        columns_to_view = view.columns.all()

        df = pandas_db.load_from_db(workflow.id,
                                    [x.name for x in columns_to_view],
                                    view.formula)
    else:
        # No view given, fetch the entire data frame
        df = pandas_db.load_from_db(workflow.id)

    vis_scripts = []
    visualizations = []
    idx = -1
    context = {'style': 'width:400px; height:225px;'}
    for column in columns_to_view:
        idx += 1

        # Skip primary keys (no point to represent any of them)
        if column.is_key:
            continue

        # Add the title and surrounding container
        visualizations.append('<h4>' + column.name + '</h4>')
        # If all values are empty, no need to proceed
        if all([not x for x in df[column.name]]):
            visualizations.append("<p>No values in this column</p><hr/>")
            continue

        visualizations.append('<div style="display: inline-flex;">')

        v = get_column_visualisations(column,
                                      df[[column.name]],
                                      vis_scripts=vis_scripts,
                                      id='column_{0}'.format(idx),
                                      context=context)

        visualizations.extend([x.html_content for x in v])
        visualizations.append('</div><hr/>')

    return render(request, 'table/stat_view.html', {
        'view': view,
        'vis_scripts': vis_scripts,
        'visualizations': visualizations
    })
Beispiel #25
0
def row_create(request):
    """
    Receives a POST request to create a new row in the data table
    :param request: Request object with all the data.
    :return:
    """

    # If there is no workflow object, go back to the index
    workflow = get_workflow(request)
    if not workflow:
        return redirect('workflow:index')

    # If the workflow has no data, the operation should not be allowed
    if workflow.nrows == 0:
        return redirect('dataops:list')

    # Create the form
    form = RowForm(request.POST or None, workflow=workflow)

    if request.method == 'GET' or not form.is_valid():
        return render(
            request, 'dataops/row_create.html', {
                'workflow': workflow,
                'form': form,
                'cancel_url': reverse('table:display')
            })

    # Create the query to update the row
    columns = workflow.get_columns()
    column_names = [c.name for c in columns]
    field_name = field_prefix + '%s'
    row_vals = [
        form.cleaned_data[field_name % idx] for idx in range(len(columns))
    ]

    # Load the existing df from the db
    df = pandas_db.load_from_db(workflow.id)

    # Perform the row addition in the DF first
    # df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
    # df.append(df2, ignore_index=True)
    new_row = pd.DataFrame([row_vals], columns=column_names)
    df = df.append(new_row, ignore_index=True)

    # Verify that the unique columns remain unique
    for ucol in [c for c in columns if c.is_key]:
        if not ops.is_unique_column(df[ucol.name]):
            form.add_error(
                None, 'Repeated value in column ' + ucol.name + '.' +
                ' It must be different to maintain Key property')
            return render(
                request, 'dataops/row_create.html', {
                    'workflow': workflow,
                    'form': form,
                    'cancel_url': reverse('table:display')
                })

    # Restore the dataframe to the DB
    ops.store_dataframe_in_db(df, workflow.id)

    # Log the event
    log_payload = zip(column_names, [str(x) for x in row_vals])
    logs.ops.put(request.user, 'tablerow_create', workflow, {
        'id': workflow.id,
        'name': workflow.name,
        'new_values': log_payload
    })

    # Done. Back to the table view
    return redirect('table:display')
Beispiel #26
0
def upload_s4(request):
    """

    Step 4: Show the user the expected effect of the merge and perform it.

    ASSUMES:

    initial_column_names: List of column names in the initial file.

    column_types: List of column types as detected by pandas

    src_is_key_column: Boolean list with src columns that are unique

    step_1: URL name of the first step

    rename_column_names: Modified column names to remove ambiguity when
                          merging.

    columns_to_upload: Boolean list denoting the columns in SRC that are
                       marked for upload.

    dst_column_names: List of column names in destination frame

    dst_is_unique_column: Boolean list with dst columns that are unique

    dst_unique_col_names: List with the column names that are unique

    dst_selected_key: Key column name selected in DST

    src_selected_key: Key column name selected in SRC

    how_merge: How to merge. One of {left, right, outter, inner}

    :param request: Web request
    :return:
    """
    # Get the workflow id we are processing
    workflow = get_workflow(request)
    if not workflow:
        return redirect('workflow:index')

    # Get the dictionary containing the information about the upload
    upload_data = request.session.get('upload_data', None)
    if not upload_data:
        # If there is nsendo object, someone is trying to jump directly here.
        return redirect('dataops:uploadmerge')

    # Check the type of request that is being processed
    if request.method == 'POST':
        # We are processing a POST request

        # Get the dataframes to merge
        try:
            dst_df = pandas_db.load_from_db(workflow.id)
            src_df = ops.load_upload_from_db(workflow.id)
        except Exception:
            return render(request, 'error.html',
                          {'message': _('Exception while loading data frame')})

        # Performing the merge
        status = ops.perform_dataframe_upload_merge(workflow.id, dst_df,
                                                    src_df, upload_data)

        # Nuke the temporary table
        pandas_db.delete_upload_table(workflow.id)

        col_info = workflow.get_column_info()
        if status:
            Log.objects.register(
                request.user, Log.WORKFLOW_DATA_FAILEDMERGE, workflow, {
                    'id': workflow.id,
                    'name': workflow.name,
                    'num_rows': workflow.nrows,
                    'num_cols': workflow.ncols,
                    'column_names': col_info[0],
                    'column_types': col_info[1],
                    'column_unique': col_info[2],
                    'error_msg': status
                })

            messages.error(request,
                           _('Merge operation failed.') + ' (' + status + ')'),
            return redirect(reverse('dataops:uploadmerge'))

        # Log the event
        Log.objects.register(
            request.user, Log.WORKFLOW_DATA_MERGE, workflow, {
                'id': workflow.id,
                'name': workflow.name,
                'num_rows': workflow.nrows,
                'num_cols': workflow.ncols,
                'column_names': col_info[0],
                'column_types': col_info[1],
                'column_unique': col_info[2]
            })

        # Remove the csvupload from the session object
        request.session.pop('upload_data', None)

        return redirect(reverse('workflow:detail', kwargs={'pk': workflow.id}))

    # We are processing a GET request

    # Create the information to include in the final report table
    dst_column_names = upload_data['dst_column_names']
    dst_selected_key = upload_data['dst_selected_key']
    src_selected_key = upload_data['src_selected_key']
    # List of final column names
    final_columns = sorted(set().union(dst_column_names,
                                       upload_data['rename_column_names']))
    # Dictionary with (new src column name: (old name, is_uploaded?)
    src_info = {
        x: (y, z)
        for (x, y, z) in zip(upload_data['rename_column_names'],
                             upload_data['initial_column_names'],
                             upload_data['columns_to_upload'])
    }

    # Create the strings to show in the table for each of the rows explaining
    # what is going to be the effect of the update operation over them.
    #
    # There are 8 cases depending on the column name being a key column,
    # in DST, SRC, if SRC is being renamed, and SRC is being loaded.
    #
    # Case 1: The column is the key column used for the merge (skip it)
    #
    # Case 2: in DST, NOT in SRC:
    #         Dst | |
    #
    # Case 3: in DST, in SRC, NOT LOADED
    #         Dst Name | <-- | Src new name (Ignored)
    #
    # Case 4: NOT in DST, in SRC, NOT LOADED
    #         | | Src new name (Ignored)
    #
    # Case 5: in DST, in SRC, Loaded, no rename:
    #         Dst Name (Update) | <-- | Src name
    #
    # Case 6: in DST, in SRC, loaded, rename:
    #         Dst Name (Update) | <-- | Src new name (Renamed)
    #
    # Case 7: NOT in DST, in SRC, loaded, no rename
    #         Dst Name (NEW) | <-- | src name
    #
    # Case 8: NOT in DST, in SRC, loaded, renamed
    #         Dst Name (NEW) | <-- | src name (renamed)
    #
    info = []
    for colname in final_columns:

        # Case 1: Skip the keys
        if colname == src_selected_key or colname == dst_selected_key:
            continue

        # Case 2: Column is in DST and left untouched (no counter part in SRC)
        if colname not in src_info.keys():
            info.append((colname, False, ''))
            continue

        # Get old name and if it is going to be loaded
        old_name, toLoad = src_info[colname]

        # Column is not going to be loaded anyway
        if not toLoad:
            if colname in dst_column_names:
                # Case 3
                info.append((colname, False, colname + _(' (Ignored)')))
            else:
                # Case 4
                info.append(('', False, colname + _(' (Ignored)')))
            continue

        # Initial name on the dst data frame
        dst_name = colname
        # Column not present in DST, so it is a new column
        if colname not in dst_column_names:
            dst_name += _(' (New)')
        else:
            dst_name += _(' (Update)')

        src_name = colname
        if colname != old_name:
            src_name += _(' (Renamed)')

        # Cases 5 - 8
        info.append((dst_name, True, src_name))

    # Store the value in the request object and update
    request.session['upload_data'] = upload_data

    return render(
        request, 'dataops/upload_s4.html', {
            'prev_step': reverse('dataops:upload_s3'),
            'info': info,
            'next_name': 'Finish'
        })
Beispiel #27
0
def upload_s2(request):
    """
    The four step process will populate the following dictionary with name
    upload_data (divided by steps in which they are set

    ASSUMES:

    initial_column_names: List of column names in the initial file.

    column_types: List of column types as detected by pandas

    src_is_key_column: Boolean list with src columns that are unique

    step_1: URL name of the first step

    CREATES:

    rename_column_names: Modified column names to remove ambiguity when
                          merging.

    columns_to_upload: Boolean list denoting the columns in SRC that are
                       marked for upload.

    keep_key_column: Boolean list with those key columns that need to be kept.

    :param request: Web request
    :return: the dictionary upload_data in the session object
    """
    workflow = get_workflow(request)
    if not workflow:
        return redirect('workflow:index')

    # Get the dictionary to store information about the upload
    # is stored in the session.
    upload_data = request.session.get('upload_data', None)
    if not upload_data:
        # If there is no object, or it is an empty dict, it denotes a direct
        # jump to this step, get back to the dataops page
        return redirect('dataops:uploadmerge')

    # Get the column names, types, and those that are unique from the data frame
    try:
        initial_columns = upload_data.get('initial_column_names')
        column_types = upload_data.get('column_types')
        src_is_key_column = upload_data.get('src_is_key_column')
    except KeyError:
        # The page has been invoked out of order
        return redirect(
            upload_data.get('step_1', reverse('dataops:uploadmerge')))

    # Get or create the list with the renamed column names
    rename_column_names = upload_data.get('rename_column_names', None)
    if rename_column_names is None:
        rename_column_names = initial_columns[:]
        upload_data['rename_column_names'] = rename_column_names

    # Get or create list of booleans identifying columns to be uploaded
    columns_to_upload = upload_data.get('columns_to_upload', None)
    if columns_to_upload is None:
        columns_to_upload = [True] * len(initial_columns)
        upload_data['columns_to_upload'] = columns_to_upload

    # Get or create list of booleans identifying key columns to be kept
    keep_key_column = upload_data.get('keep_key_column', None)
    if keep_key_column is None:
        keep_key_column = upload_data['src_is_key_column'][:]
        upload_data['keep_key_column'] = keep_key_column

    # Bind the form with the received data (remember unique columns)
    form = SelectColumnUploadForm(request.POST or None,
                                  column_names=rename_column_names,
                                  columns_to_upload=columns_to_upload,
                                  is_key=src_is_key_column,
                                  keep_key=keep_key_column)

    # Get a hold of the fields to create a list to be processed in the page
    load_fields = [f for f in form if f.name.startswith('upload_')]
    newname_fields = [f for f in form if f.name.startswith('new_name_')]
    src_key_fields = [
        form['make_key_%s' % idx] if src_is_key_column[idx] else None
        for idx in range(len(src_is_key_column))
    ]

    # Create one of the context elements for the form. Pack the lists so that
    # they can be iterated in the template
    df_info = [
        list(i) for i in zip(load_fields, initial_columns, newname_fields,
                             column_types, src_key_fields)
    ]

    # Process the initial loading of the form and return
    if request.method != 'POST' or not form.is_valid():
        # Update the dictionary with the session information
        request.session['upload_data'] = upload_data
        context = {
            'form': form,
            'wid': workflow.id,
            'prev_step': upload_data['step_1'],
            'df_info': df_info
        }

        if not ops.workflow_id_has_table(workflow.id):
            # It is an upload, not a merge, set the next step to finish
            context['next_name'] = _('Finish')
        return render(request, 'dataops/upload_s2.html', context)

    # At this point we are processing a valid POST request

    # We need to modify upload_data with the information received in the post
    for i in range(len(initial_columns)):
        new_name = form.cleaned_data['new_name_%s' % i]
        upload_data['rename_column_names'][i] = new_name
        upload = form.cleaned_data['upload_%s' % i]
        upload_data['columns_to_upload'][i] = upload

        if src_is_key_column[i]:
            # If the column is key, check if the user wants to keep it
            keep_key_column[i] = form.cleaned_data['make_key_%s' % i]

    # Update the dictionary with the session information
    request.session['upload_data'] = upload_data

    # Load the existing DF or None if it doesn't exist
    existing_df = pandas_db.load_from_db(workflow.id)

    if existing_df is not None:
        # This is a merge operation, so move to Step 3
        return redirect('dataops:upload_s3')

    # This is an upload operation (not a merge) save the uploaded dataframe in
    # the DB and finish.

    # Get the uploaded data_frame
    try:
        data_frame = ops.load_upload_from_db(workflow.id)
    except Exception:
        return render(
            request, 'error.html',
            {'message': _('Exception while retrieving the data frame')})

    # Update the data frame
    status = ops.perform_dataframe_upload_merge(workflow.id, existing_df,
                                                data_frame, upload_data)

    if status:
        # Something went wrong. Flag it and reload
        context = {
            'form': form,
            'wid': workflow.id,
            'prev_step': upload_data['step_1'],
            'df_info': df_info
        }
        return render(request, 'dataops/upload_s2.html', context)

    # Nuke the temporary table
    pandas_db.delete_upload_table(workflow.id)

    # Log the event
    col_info = workflow.get_column_info()
    Log.objects.register(
        request.user, Log.WORKFLOW_DATA_UPLOAD, workflow, {
            'id': workflow.id,
            'name': workflow.name,
            'num_rows': workflow.nrows,
            'num_cols': workflow.ncols,
            'column_names': col_info[0],
            'column_types': col_info[1],
            'column_unique': col_info[2]
        })

    # Go back to show the workflow detail
    return redirect(reverse('workflow:detail', kwargs={'pk': workflow.id}))
Beispiel #28
0
def run(request, pk):
    """
    View provided as the first step to execute a plugin.
    :param request: HTTP request received
    :param pk: primary key of the plugin
    :return: Page offering to select the columns to invoke
    """

    # Get the workflow and the plugin information
    workflow = get_workflow(request)
    if not workflow:
        return redirect('workflow:index')
    try:
        plugin_info = PluginRegistry.objects.get(pk=pk)
    except PluginRegistry.DoesNotExist:
        return redirect('workflow:index')

    plugin_instance, msgs = load_plugin(plugin_info.filename)
    if plugin_instance is None:
        messages.error(
            request,
            'Unable to instantiate plugin "{0}"'.format(plugin_info.name))
        return redirect('dataops:transform')

    if len(plugin_instance.input_column_names) > 0:
        # The plug in works with a fixed set of columns
        cnames = workflow.columns.all().values_list('name', flat=True)
        if not set(plugin_instance.input_column_names) < set(cnames):
            # The set of columns are not part of the workflow
            messages.error(
                request,
                'Workflow does not have the correct columns to run this plugin'
            )
            return redirect('dataops:transform')

    # create the form to select the columns and the corresponding dictionary
    form = SelectColumnForm(request.POST or None,
                            workflow=workflow,
                            plugin_instance=plugin_instance)

    # Set the basic elements in the context
    context = {
        'form':
        form,
        'output_column_fields':
        [x for x in list(form) if x.name.startswith(field_prefix + 'output')],
        'parameters': [
            x for x in list(form)
            if x.name.startswith(field_prefix + 'parameter')
        ],
        'pinstance':
        plugin_instance,
        'id':
        workflow.id
    }

    # If it is a GET request or non valid, render the form.
    if request.method == 'GET' or not form.is_valid():
        return render(request, 'dataops/plugin_info_for_run.html', context)

    # POST is correct proceed with execution

    # Get the data frame and select the appropriate columns
    try:
        dst_df = pandas_db.load_from_db(workflow.id)
    except Exception:
        messages.error(request, 'Exception while retrieving the data frame')
        return render(request, 'error.html', {})

    # Take the list of inputs from the form if empty list is given.
    if not plugin_instance.input_column_names:
        plugin_instance.input_column_names = \
            [c.name for c in form.cleaned_data['columns']]

    # Get the proper subset of the data frame
    sub_df = dst_df[[form.cleaned_data['merge_key']] +
                    plugin_instance.input_column_names]

    # Process the output columns
    for idx, output_cname in enumerate(plugin_instance.output_column_names):
        new_cname = form.cleaned_data[field_prefix + 'output_%s' % idx]
        if form.cleaned_data['out_column_suffix']:
            new_cname += form.cleaned_data['out_column_suffix']
        plugin_instance.output_column_names[idx] = new_cname

    # Pack the parameters
    params = dict()
    for idx, tpl in enumerate(plugin_instance.parameters):
        params[tpl[0]] = form.cleaned_data[field_prefix + 'parameter_%s' % idx]

    # Execute the plugin
    result_df, status = run_plugin(plugin_instance, sub_df,
                                   form.cleaned_data['merge_key'], params)

    if status is not None:
        context['exec_status'] = status

        # Log the event
        logs.ops.put(request.user, 'plugin_execute', workflow, {
            'id': plugin_info.id,
            'name': plugin_info.name,
            'status': status
        })

        return render(request, 'dataops/plugin_execution_report.html', context)

    # Additional checks
    # Result has the same number of rows
    if result_df.shape[0] != dst_df.shape[0]:
        status = 'Incorrect number of rows in result data frame.'
        context['exec_status'] = status

        # Log the event
        logs.ops.put(request.user, 'plugin_execute', workflow, {
            'id': plugin_info.id,
            'name': plugin_info.name,
            'status': status
        })

        return render(request, 'dataops/plugin_execution_report.html', context)

    # Result column names are consistent
    if set(result_df.columns) != \
            set([form.cleaned_data['merge_key']] +
                plugin_instance.output_column_names):
        status = 'Incorrect columns in result data frame.'
        context['exec_status'] = status

        # Log the event
        logs.ops.put(request.user, 'plugin_execute', workflow, {
            'id': plugin_info.id,
            'name': plugin_info.name,
            'status': status
        })

        return render(request, 'dataops/plugin_execution_report.html', context)

    # Proceed with the merge
    try:
        result = ops.perform_dataframe_upload_merge(
            workflow.id, dst_df, result_df, {
                'how_merge': 'left',
                'dst_selected_key': form.cleaned_data['merge_key'],
                'src_selected_key': form.cleaned_data['merge_key'],
                'initial_column_names': list(result_df.columns),
                'rename_column_names': list(result_df.columns),
                'columns_to_upload': [True] * len(list(result_df.columns))
            })
    except Exception as e:
        context['exec_status'] = e.message
        return render(request, 'dataops/plugin_execution_report.html', context)

    if isinstance(result, str):
        # Something went wrong
        context['exec_status'] = result
        return render(request, 'dataops/plugin_execution_report.html', context)

    # Get the resulting dataframe
    final_df = pandas_db.load_from_db(workflow.id)

    # Update execution time
    plugin_info.executed = datetime.now(
        pytz.timezone(ontask_settings.TIME_ZONE))
    plugin_info.save()

    # List of pairs (column name, column type) in the result to create the
    # log event
    result_columns = zip(list(result_df.columns),
                         pandas_db.df_column_types_rename(result_df))

    # Log the event
    logs.ops.put(
        request.user, 'plugin_execute', workflow, {
            'id': plugin_info.id,
            'name': plugin_info.name,
            'status': status,
            'result_columns': result_columns
        })

    # Create the table information to show in the report.
    column_info = []
    dst_names = list(dst_df.columns)
    result_names = list(result_df.columns)
    for c in list(final_df.columns):
        if c not in result_names:
            column_info.append((c, ''))
        elif c not in dst_names:
            column_info.append(('', c + ' (New)'))
        else:
            if c == form.cleaned_data['merge_key']:
                column_info.append((c, c))
            else:
                column_info.append((c + ' (Update)', c))

    context['info'] = column_info
    context['key'] = form.cleaned_data['merge_key']
    context['id'] = workflow.id

    # Redirect to the notification page with the proper info
    return render(request, 'dataops/plugin_execution_report.html', context)
Beispiel #29
0
def trck(request):
    """
    Receive a request with a token from email read tracking
    :param request: Request object
    :return: Reflects in the DB the reception and (optionally) in the data 
    table of the workflow
    """
    if request.method != 'GET':
        raise Http404

    # Detected attempt to track event
    track_id = request.GET.get('v', None)
    if not track_id:
        raise Http404

    # If the track_id is not correctly signed, out.
    try:
        track_id = signing.loads(track_id)
    except signing.BadSignature:
        raise Http404

    # The request is legit and the value has been verified. Track_id has now
    # the dictionary with the information included in the tracking

    # Get the objects related to the ping
    try:
        user = get_user_model().objects.get(email=track_id['sender'])
        action = Action.objects.get(pk=track_id['action'])
    except Exception:
        raise Http404

    # If the track comes with column_dst, the event needs to be reflected
    # back in the data frame
    column_dst = track_id.get('column_dst', '')

    if column_dst:
        # Load the dataframe
        data_frame = pandas_db.load_from_db(action.workflow.id)

        # Extract the relevant fields from the track_id
        column_to = track_id['column_to']
        msg_to = track_id['to']
        track_col_name = track_id['column_dst']
        # New val in DF: df.loc[df['a']==1,'b'] = VAL
        data_frame.loc[data_frame[column_to] == msg_to, track_col_name] += 1

        # Save DF
        ops.store_dataframe_in_db(data_frame, action.workflow.id)

        # Get the tracking column and update all the conditions in the
        # actions that have this column as part of their formulas
        track_col = action.workflow.columns.get(name=track_col_name)
        for action in action.workflow.actions.all():
            action.update_n_rows_selected(track_col)

    # Record the event
    logs.ops.put(
        user,
        'action_email_read',
        action.workflow,
        {
            'to': track_id['to'],  # The destination of the email
            'email_column':
            track_id['column_to'],  # The column used to get the
            'column_dst': column_dst
        })

    return HttpResponse(settings.PIXEL, content_type='image/png')
Beispiel #30
0
    def test_table_create_derived_columns(self):
        # Login
        self.login('*****@*****.**')

        self.open(reverse('workflow:index'))

        # GO TO THE WORKFLOW PAGE
        WebDriverWait(self.selenium,
                      10).until(EC.title_is('OnTask :: Workflows'))
        self.assertIn('New Workflow', self.selenium.page_source)
        self.assertIn('Import Workflow', self.selenium.page_source)

        # Open the workflow
        wf_link = self.selenium.find_element_by_link_text(self.wflow_name)
        wf_link.click()
        # Wait for the table to be refreshed
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located((By.ID, 'column-table_previous')))

        # Click in the add derived column button
        self.selenium.find_element_by_css_selector(
            "button.btn.btn-primary.btn-sm.js-workflow-formula-column-add"
        ).click()
        # Wait for the form to create the derived column
        WebDriverWait(self.selenium, 10).until(
            EC.text_to_be_present_in_element(
                (By.XPATH, "//div[@id='modal-item']/div/div/form/div/h4"),
                'Add derived column'))

        # Fill out the details for D1 = c1 + c2
        self.selenium.find_element_by_id("id_name").click()
        self.selenium.find_element_by_id("id_name").clear()
        self.selenium.find_element_by_id("id_name").send_keys("d1")
        self.selenium.find_element_by_css_selector(
            "div.sol-input-container > input[type=\"text\"]").click()
        self.selenium.find_element_by_id("id_op_type").click()
        Select(self.selenium.find_element_by_id(
            "id_op_type")).select_by_visible_text("sum: Sum selected columns")
        self.selenium.find_element_by_css_selector(
            "div.sol-input-container > input[type=\"text\"]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[2]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[3]").click()
        self.selenium.find_element_by_css_selector(
            "div.sol-current-selection").click()
        self.selenium.find_element_by_css_selector(
            "div.modal-footer > button.btn.btn-primary").click()
        # MODAL WAITING
        WebDriverWait(self.selenium, 10).until_not(
            EC.presence_of_element_located((By.CLASS_NAME, 'modal-open')))
        # Wait for the table to be refreshed
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located((By.ID, 'column-table_previous')))

        # Click in the add derived column button
        self.selenium.find_element_by_css_selector(
            "button.btn.btn-primary.btn-sm.js-workflow-formula-column-add"
        ).click()
        # Wait for the form to create the derived column
        WebDriverWait(self.selenium, 10).until(
            EC.text_to_be_present_in_element(
                (By.XPATH, "//div[@id='modal-item']/div/div/form/div/h4"),
                'Add derived column'))

        # Fill out the details for D2 = c3 * c4
        self.selenium.find_element_by_id("id_name").click()
        self.selenium.find_element_by_id("id_name").clear()
        self.selenium.find_element_by_id("id_name").send_keys("d2")
        self.selenium.find_element_by_css_selector(
            "div.sol-input-container > input[type=\"text\"]").click()
        self.selenium.find_element_by_id("id_op_type").click()
        Select(
            self.selenium.find_element_by_id("id_op_type")
        ).select_by_visible_text("prod: Product of the selected columns")
        self.selenium.find_element_by_css_selector(
            "div.sol-input-container > input[type=\"text\"]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[4]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[5]").click()
        self.selenium.find_element_by_css_selector(
            "div.sol-current-selection").click()
        self.selenium.find_element_by_css_selector(
            "div.modal-footer > button.btn.btn-primary").click()
        # MODAL WAITING
        WebDriverWait(self.selenium, 10).until_not(
            EC.presence_of_element_located((By.CLASS_NAME, 'modal-open')))
        # Wait for the table to be refreshed
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located((By.ID, 'column-table_previous')))

        # Click in the add derived column button
        self.selenium.find_element_by_css_selector(
            "button.btn.btn-primary.btn-sm.js-workflow-formula-column-add"
        ).click()
        # Wait for the form to create the derived column
        WebDriverWait(self.selenium, 10).until(
            EC.text_to_be_present_in_element(
                (By.XPATH, "//div[@id='modal-item']/div/div/form/div/h4"),
                'Add derived column'))

        # Fill out the details for D3 = max(c5, c6)
        self.selenium.find_element_by_id("id_name").click()
        self.selenium.find_element_by_id("id_name").clear()
        self.selenium.find_element_by_id("id_name").send_keys("d3")
        self.selenium.find_element_by_id("id_op_type").click()
        Select(self.selenium.find_element_by_id("id_op_type")
               ).select_by_visible_text("max: Maximum of the selected columns")
        self.selenium.find_element_by_css_selector(
            "div.sol-input-container > input[type=\"text\"]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[6]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[7]").click()
        self.selenium.find_element_by_css_selector("div.modal-body").click()
        self.selenium.find_element_by_css_selector(
            "div.modal-footer > button.btn.btn-primary").click()
        # MODAL WAITING
        WebDriverWait(self.selenium, 10).until_not(
            EC.presence_of_element_located((By.CLASS_NAME, 'modal-open')))
        # Wait for the table to be refreshed
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located((By.ID, 'column-table_previous')))

        # Click in the add derived column button
        self.selenium.find_element_by_css_selector(
            "button.btn.btn-primary.btn-sm.js-workflow-formula-column-add"
        ).click()
        # Wait for the form to create the derived column
        WebDriverWait(self.selenium, 10).until(
            EC.text_to_be_present_in_element(
                (By.XPATH, "//div[@id='modal-item']/div/div/form/div/h4"),
                'Add derived column'))

        # Fill out the details for D4 = min(c7, c8)
        self.selenium.find_element_by_id("id_name").click()
        self.selenium.find_element_by_id("id_name").clear()
        self.selenium.find_element_by_id("id_name").send_keys("d4")
        self.selenium.find_element_by_id("id_op_type").click()
        Select(self.selenium.find_element_by_id("id_op_type")
               ).select_by_visible_text("min: Minimum of the selected columns")
        self.selenium.find_element_by_css_selector(
            "div.sol-input-container > input[type=\"text\"]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[8]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[9]").click()
        self.selenium.find_element_by_css_selector("div.modal-body").click()
        self.selenium.find_element_by_css_selector(
            "div.modal-footer > button.btn.btn-primary").click()
        # MODAL WAITING
        WebDriverWait(self.selenium, 10).until_not(
            EC.presence_of_element_located((By.CLASS_NAME, 'modal-open')))
        # Wait for the table to be refreshed
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located((By.ID, 'column-table_previous')))

        # Click in the add derived column button
        self.selenium.find_element_by_css_selector(
            "button.btn.btn-primary.btn-sm.js-workflow-formula-column-add"
        ).click()
        # Wait for the form to create the derived column
        WebDriverWait(self.selenium, 10).until(
            EC.text_to_be_present_in_element(
                (By.XPATH, "//div[@id='modal-item']/div/div/form/div/h4"),
                'Add derived column'))

        # Fill out the details for D5 = mean(c1, c2)
        self.selenium.find_element_by_id("id_name").click()
        self.selenium.find_element_by_id("id_name").clear()
        self.selenium.find_element_by_id("id_name").send_keys("d5")
        self.selenium.find_element_by_css_selector(
            "div.sol-input-container > input[type=\"text\"]").click()
        self.selenium.find_element_by_id("id_op_type").click()
        Select(self.selenium.find_element_by_id("id_op_type")
               ).select_by_visible_text("mean: Mean of the selected columns")
        self.selenium.find_element_by_css_selector(
            "div.sol-input-container > input[type=\"text\"]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[2]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[3]").click()
        self.selenium.find_element_by_css_selector(
            "div.sol-current-selection").click()
        self.selenium.find_element_by_css_selector(
            "div.modal-footer > button.btn.btn-primary").click()
        # MODAL WAITING
        WebDriverWait(self.selenium, 10).until_not(
            EC.presence_of_element_located((By.CLASS_NAME, 'modal-open')))
        # Wait for the table to be refreshed
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located((By.ID, 'column-table_previous')))

        # Click in the add derived column button
        self.selenium.find_element_by_css_selector(
            "button.btn.btn-primary.btn-sm.js-workflow-formula-column-add"
        ).click()
        # Wait for the form to create the derived column
        WebDriverWait(self.selenium, 10).until(
            EC.text_to_be_present_in_element(
                (By.XPATH, "//div[@id='modal-item']/div/div/form/div/h4"),
                'Add derived column'))

        # Fill out the details for D6 = median(c3, c4)
        self.selenium.find_element_by_id("id_name").click()
        self.selenium.find_element_by_id("id_name").clear()
        self.selenium.find_element_by_id("id_name").send_keys("d6")
        self.selenium.find_element_by_css_selector(
            "div.sol-input-container > input[type=\"text\"]").click()
        self.selenium.find_element_by_id("id_op_type").click()
        Select(
            self.selenium.find_element_by_id("id_op_type")
        ).select_by_visible_text("median: Median of the selected columns")
        self.selenium.find_element_by_css_selector(
            "div.sol-input-container > input[type=\"text\"]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[4]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[5]").click()
        self.selenium.find_element_by_css_selector(
            "div.sol-current-selection").click()
        self.selenium.find_element_by_css_selector(
            "div.modal-footer > button.btn.btn-primary").click()
        # MODAL WAITING
        WebDriverWait(self.selenium, 10).until_not(
            EC.presence_of_element_located((By.CLASS_NAME, 'modal-open')))
        # Wait for the table to be refreshed
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located((By.ID, 'column-table_previous')))

        # Click in the add derived column button
        self.selenium.find_element_by_css_selector(
            "button.btn.btn-primary.btn-sm.js-workflow-formula-column-add"
        ).click()
        # Wait for the form to create the derived column
        WebDriverWait(self.selenium, 10).until(
            EC.text_to_be_present_in_element(
                (By.XPATH, "//div[@id='modal-item']/div/div/form/div/h4"),
                'Add derived column'))

        # Fill out the details for D7 = std(c5, c6)
        self.selenium.find_element_by_id("id_name").click()
        self.selenium.find_element_by_id("id_name").clear()
        self.selenium.find_element_by_id("id_name").send_keys("d7")
        self.selenium.find_element_by_id("id_op_type").click()
        Select(self.selenium.find_element_by_id(
            "id_op_type")).select_by_visible_text(
                "std: Standard deviation over the selected columns")
        self.selenium.find_element_by_css_selector(
            "div.sol-input-container > input[type=\"text\"]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[6]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[7]").click()
        self.selenium.find_element_by_css_selector("div.modal-body").click()
        self.selenium.find_element_by_css_selector(
            "div.modal-footer > button.btn.btn-primary").click()
        # MODAL WAITING
        WebDriverWait(self.selenium, 10).until_not(
            EC.presence_of_element_located((By.CLASS_NAME, 'modal-open')))
        # Wait for the table to be refreshed
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located((By.ID, 'column-table_previous')))

        # Click in the add derived column button
        self.selenium.find_element_by_css_selector(
            "button.btn.btn-primary.btn-sm.js-workflow-formula-column-add"
        ).click()
        # Wait for the form to create the derived column
        WebDriverWait(self.selenium, 10).until(
            EC.text_to_be_present_in_element(
                (By.XPATH, "//div[@id='modal-item']/div/div/form/div/h4"),
                'Add derived column'))

        # Fill out the details for D8 = all(c91, c92)
        self.selenium.find_element_by_id("id_name").click()
        self.selenium.find_element_by_id("id_name").clear()
        self.selenium.find_element_by_id("id_name").send_keys("d8")
        self.selenium.find_element_by_id("id_op_type").click()
        Select(self.selenium.find_element_by_id(
            "id_op_type")).select_by_visible_text(
                "all: True when all elements in selected columns are true")
        self.selenium.find_element_by_css_selector(
            "div.sol-input-container > input[type=\"text\"]").click()
        # Wait for JS to do its thing
        WebDriverWait(self.selenium, 10).until(
            EC.element_to_be_clickable(
                (By.XPATH, "(//input[@name='columns'])[12]")))
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[11]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[12]").click()
        self.selenium.find_element_by_css_selector("div.modal-body").click()
        self.selenium.find_element_by_css_selector(
            "div.modal-footer > button.btn.btn-primary").click()
        # MODAL WAITING
        WebDriverWait(self.selenium, 10).until_not(
            EC.presence_of_element_located((By.CLASS_NAME, 'modal-open')))
        # Wait for the table to be refreshed
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located((By.ID, 'column-table_previous')))

        # Click in the add derived column button
        self.selenium.find_element_by_css_selector(
            "button.btn.btn-primary.btn-sm.js-workflow-formula-column-add"
        ).click()
        # Wait for the form to create the derived column
        WebDriverWait(self.selenium, 10).until(
            EC.text_to_be_present_in_element(
                (By.XPATH, "//div[@id='modal-item']/div/div/form/div/h4"),
                'Add derived column'))

        # Fill out the details for D9 = any(c91, c92)
        self.selenium.find_element_by_id("id_name").click()
        self.selenium.find_element_by_id("id_name").clear()
        self.selenium.find_element_by_id("id_name").send_keys("d9")
        self.selenium.find_element_by_id("id_op_type").click()
        Select(self.selenium.find_element_by_id(
            "id_op_type")).select_by_visible_text(
                "any: True when any element in selected columns is true")
        self.selenium.find_element_by_css_selector(
            "div.sol-input-container > input[type=\"text\"]").click()
        # Wait for JS to do its thing
        WebDriverWait(self.selenium, 10).until(
            EC.element_to_be_clickable(
                (By.XPATH, "(//input[@name='columns'])[12]")))
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[11]").click()
        self.selenium.find_element_by_xpath(
            "(//input[@name='columns'])[12]").click()
        self.selenium.find_element_by_css_selector("div.modal-body").click()
        self.selenium.find_element_by_css_selector(
            "div.modal-footer > button.btn.btn-primary").click()
        # MODAL WAITING
        WebDriverWait(self.selenium, 10).until_not(
            EC.presence_of_element_located((By.CLASS_NAME, 'modal-open')))
        # Wait for the table to be refreshed
        WebDriverWait(self.selenium, 10).until(
            EC.presence_of_element_located((By.ID, 'column-table_previous')))

        # Check that the data is correct
        df = pandas_db.load_from_db(Workflow.objects.all()[0].id)

        # d1 = c1 + c2
        self.assertTrue((df['d1'] == df[['c1', 'c2']].sum(axis=1)).all())
        # d2 = c3 * c4
        self.assertTrue((df['d2'] == df[['c3', 'c4']].prod(axis=1)).all())
        # d3 = max(c5, c6)
        self.assertTrue((df['d3'] == df[['c5', 'c6']].max(axis=1)).all())
        # d4 = min(c7, c8)
        self.assertTrue((df['d4'] == df[['c7', 'c8']].min(axis=1)).all())
        # d5 = mean(c1, c2)
        self.assertTrue((df['d5'] == df[['c1', 'c2']].mean(axis=1)).all())
        # d6 = median(c3, c4)
        self.assertTrue((df['d6'] == df[['c3', 'c4']].median(axis=1)).all())
        # d7 = std(c5, c6) (error below 10^{-11})
        self.assertTrue(
            ((df['d7'] - df[['c5', 'c6']].std(axis=1)).abs() < 0.1e-12).all())
        # d8 = all(c91, c92)
        self.assertTrue((df['d8'] == df[['c91', 'c92']].all(axis=1)).all())
        # d9 = any(c91, c92)
        self.assertTrue((df['d9'] == df[['c91', 'c92']].any(axis=1)).all())

        # End of session
        self.logout()