Beispiel #1
0
def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder,
             phase_train_placeholder, batch_size_placeholder,
             control_placeholder, embeddings, labels, image_paths,
             actual_issame, batch_size, nrof_folds, log_dir, step,
             summary_writer, stat, epoch, distance_metric, subtract_mean,
             use_flipped_images, use_fixed_image_standardization):
    start_time = time.time()
    # Run forward pass to calculate embeddings
    print('Runnning forward pass on LFW images')

    # Enqueue one epoch of image paths and labels
    nrof_embeddings = len(
        actual_issame) * 2  # nrof_pairs * nrof_images_per_pair
    nrof_flips = 2 if use_flipped_images else 1
    nrof_images = nrof_embeddings * nrof_flips
    labels_array = np.expand_dims(np.arange(0, nrof_images), 1)
    image_paths_array = np.expand_dims(
        np.repeat(np.array(image_paths), nrof_flips), 1)
    control_array = np.zeros_like(labels_array, np.int32)
    if use_fixed_image_standardization:
        control_array += np.ones_like(
            labels_array) * facenet.FIXED_STANDARDIZATION
    if use_flipped_images:
        # Flip every second image
        control_array += (labels_array % 2) * facenet.FLIP
    sess.run(
        enqueue_op, {
            image_paths_placeholder: image_paths_array,
            labels_placeholder: labels_array,
            control_placeholder: control_array
        })

    embedding_size = int(embeddings.get_shape()[1])
    assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images, ))
    for i in range(nrof_batches):
        feed_dict = {
            phase_train_placeholder: False,
            batch_size_placeholder: batch_size
        }
        emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab, :] = emb
        if i % 10 == 9:
            print('.', end='')
            sys.stdout.flush()
    print('')
    embeddings = np.zeros((nrof_embeddings, embedding_size * nrof_flips))
    if use_flipped_images:
        # Concatenate embeddings for flipped and non flipped version of the images
        embeddings[:, :embedding_size] = emb_array[0::2, :]
        embeddings[:, embedding_size:] = emb_array[1::2, :]
    else:
        embeddings = emb_array

    assert np.array_equal(
        lab_array, np.arange(nrof_images)
    ) == True, 'Wrong labels used for evaluation, possibly caused by training examples left in the input pipeline'
    _, _, accuracy, val, val_std, far = lfw.evaluate(
        embeddings,
        actual_issame,
        nrof_folds=nrof_folds,
        distance_metric=distance_metric,
        subtract_mean=subtract_mean)

    print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
    lfw_time = time.time() - start_time
    # Add validation loss and accuracy to summary
    summary = tf.Summary()
    #pylint: disable=maybe-no-member
    summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy))
    summary.value.add(tag='lfw/val_rate', simple_value=val)
    summary.value.add(tag='time/lfw', simple_value=lfw_time)
    summary_writer.add_summary(summary, step)
    with open(os.path.join(log_dir, 'lfw_result.txt'), 'at') as f:
        f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val))
    stat['lfw_accuracy'][epoch - 1] = np.mean(accuracy)
    stat['lfw_valrate'][epoch - 1] = val
def evaluate(sess,
             image_paths,
             embeddings,
             labels_batch,
             image_paths_placeholder,
             labels_placeholder,
             batch_size_placeholder,
             learning_rate_placeholder,
             phase_train_placeholder,
             enqueue_op,
             actual_issame,
             batch_size,
             nrof_folds,
             log_dir,
             step,
             summary_writer,
             embedding_size,
             threshold_to_test=None,
             tag='lfw'):
    result = {}
    start_time = time.time()
    # Run forward pass to calculate embeddings
    print('Running forward pass on ' + tag + ' images: ', end='')

    nrof_images = len(actual_issame) * 2
    assert (len(image_paths) == nrof_images)
    labels_array = np.reshape(np.arange(nrof_images), (-1, 4))
    image_paths_array = np.reshape(np.expand_dims(np.array(image_paths), 1),
                                   (-1, 4))
    sess.run(
        enqueue_op, {
            image_paths_placeholder: image_paths_array,
            labels_placeholder: labels_array
        })
    emb_array = np.zeros((nrof_images, embedding_size))
    nrof_batches = int(np.ceil(nrof_images / batch_size))
    label_check_array = np.zeros((nrof_images, ))
    for i in xrange(nrof_batches):
        batch_size = min(nrof_images - i * batch_size, batch_size)
        emb, lab = sess.run(
            [embeddings, labels_batch],
            feed_dict={
                batch_size_placeholder: batch_size,
                learning_rate_placeholder: 0.0,
                phase_train_placeholder: False
            })
        emb_array[lab, :] = emb
        label_check_array[lab] = 1
    print('%.3f' % (time.time() - start_time))

    assert (np.all(label_check_array == 1))

    tpr, fpr, accuracy, val, val_std, far, best_threshold, threshold_lowfar, tpr_lowfar, acc_lowfar = lfw.evaluate(
        emb_array, actual_issame, nrof_folds=nrof_folds)

    print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
    lfw_time = time.time() - start_time
    # Add validation loss and accuracy to summary
    summary = tf.Summary()
    # pylint: disable=maybe-no-member
    summary.value.add(tag=tag + '/accuracy', simple_value=np.mean(accuracy))
    summary.value.add(tag=tag + '/val_rate', simple_value=val)
    summary.value.add(tag=tag + '/best_threshold', simple_value=best_threshold)
    summary.value.add(tag=tag + '/val_rate_threshold',
                      simple_value=threshold_lowfar)
    summary.value.add(tag='time/' + tag, simple_value=lfw_time)
    summary_writer.add_summary(summary, step)
    with open(os.path.join(log_dir, tag + '_result.txt'), 'at') as f:
        f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val))

    result['accuracy'] = np.mean(accuracy)
    result['val_rate'] = val
    result['best_threshold'] = best_threshold

    return result
Beispiel #3
0
def evaluate(config: config_reader.validation_config,
             model: facenet.model_container,
             sess,
             image_paths,
             actual_issame,
             tag='eval'):

    # Run forward pass to calculate embeddings
    print('Runnning forward pass on ' + tag + ' images')
    
    # Enqueue one epoch of image paths and labels
    nrof_embeddings = len(image_paths)  # nrof_pairs * nrof_images_per_pair
    nrof_flips = 2 if config.use_flipped_images else 1
    nrof_images = nrof_embeddings * nrof_flips

    batch_size = 0
    if nrof_images < 100:
        batch_size = nrof_images
    else:
        # Try multiple batch size to fit number or images
        for i in range(1, 101):
            if nrof_images % i == 0:
                batch_size = i
    assert not batch_size == 0, 'Fitting batch size not found for {} images.'.format(nrof_images)
    print('Batch size: {}'.format(batch_size))

    labels_array = np.expand_dims(np.arange(0,nrof_images),1)
    image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),nrof_flips),1)

    control_array = np.zeros_like(labels_array, np.int32)
    if config.use_fixed_image_standardization:
        control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION
    if config.use_flipped_images:
        # Flip every second image
        control_array += (labels_array % 2)*facenet.FLIP

    sess.run(model.enqueue_op, {model.image_paths_placeholder: image_paths_array, model.labels_placeholder: labels_array, model.control_placeholder: control_array})
    
    embedding_size = int(model.embeddings.get_shape()[1])
    assert nrof_images % batch_size == 0, 'The number of {} images ({}) must be an integer multiple of the batch size ({})'.format(tag, nrof_images, batch_size)
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images,))
    for i in range(nrof_batches):



        feed_dict = {model.phase_train_placeholder:False, model.batch_size_placeholder: batch_size}
        emb, lab = sess.run([model.embeddings, model.labels_batch], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab, :] = emb
        if i % 10 == 9:
            print('.', end='')
            sys.stdout.flush()
    print('')
    embeddings = np.zeros((nrof_embeddings, embedding_size*nrof_flips))
    if config.use_flipped_images:
        # Concatenate embeddings for flipped and non flipped version of the images
        embeddings[:,:embedding_size] = emb_array[0::2,:]
        embeddings[:,embedding_size:] = emb_array[1::2,:]
    else:
        embeddings = emb_array

    assert np.array_equal(lab_array, np.arange(nrof_images))==True, 'Wrong labels used for evaluation, possibly caused by training examples left in the input pipeline'
    tpr, fpr, accuracy, val, val_std, far, best_threshold, threshold_lowfar, tpr_lowfar, acc_lowfar = lfw.evaluate(embeddings,
                                                                                                                   actual_issame,
                                                                                                                   nrof_folds=config.nrof_folds,
                                                                                                                   distance_metric=config.distance_metric,
                                                                                                                   subtract_mean=config.subtract_mean)

    print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
    print('Best threshold: %1.3f' % best_threshold)
    print('Threshold: %1.3f @ FAR=%2.5f' % (threshold_lowfar, far))

    auc = metrics.auc(fpr, tpr)
    print('Area Under Curve (AUC): %1.6f' % auc)

    eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
    print('Equal Error Rate (EER): %1.6f' % eer)