def _load_all(self, anno_file, shuffle):
        """
        initialize all entries given annotation json file

        Parameters:
        ----------
        anno_file: str
            annotation json file
        shuffle: bool
            whether to shuffle image list
        """
        image_set_index = []
        labels = []
        coco = COCO(anno_file)
        img_ids = coco.getImgIds()
        # deal with class names
        cats = [cat['name'] for cat in coco.loadCats(coco.getCatIds())]
        class_to_coco_ind = dict(zip(cats, coco.getCatIds()))
        class_to_ind = dict(zip(self.classes, range(len(self.classes))))
        coco_ind_to_class_ind = dict([(class_to_coco_ind[cls], class_to_ind[cls])
                                     for cls in self.classes[0:]])
        for img_id in img_ids:
            # filename
            image_info = coco.loadImgs(img_id)[0]
            filename = image_info["file_name"]
            subdir = filename.split('_')[1]
            height = image_info["height"]
            width = image_info["width"]
            # label
            anno_ids = coco.getAnnIds(imgIds=img_id)
            annos = coco.loadAnns(anno_ids)
            label = []
            for anno in annos:
                cat_id = coco_ind_to_class_ind[anno['category_id']]
                bbox = anno["bbox"]
                assert len(bbox) == 4
                xmin = float(bbox[0]) / width
                ymin = float(bbox[1]) / height
                xmax = xmin + float(bbox[2]) / width
                ymax = ymin + float(bbox[3]) / height
                label.append([cat_id, xmin, ymin, xmax, ymax, 0])
            if label:
                labels.append(np.array(label))
                image_set_index.append(os.path.join(subdir, filename))

        if shuffle:
            import random
            indices = list(range(len(image_set_index)))
            random.shuffle(indices)
            image_set_index = [image_set_index[i] for i in indices]
            labels = [labels[i] for i in indices]
        # store the results
        self.image_set_index = image_set_index
        self.labels = labels
Beispiel #2
0
class coco(IMDB):
    def __init__(self,
                 image_set,
                 root_path,
                 data_path,
                 result_path=None,
                 mask_size=-1,
                 binary_thresh=None,
                 load_mask=False):
        """
        fill basic information to initialize imdb
        :param image_set: train2014, val2014, test2015
        :param root_path: 'data', will write 'rpn_data', 'cache'
        :param data_path: 'data/coco'
        """
        super(coco, self).__init__('COCO', image_set, root_path, data_path,
                                   result_path)
        self.root_path = root_path
        self.data_path = data_path
        self.coco = COCO(self._get_ann_file())
        # train0829.txt
        print('>>>>>>>>>>> image set {}'.format(image_set))
        self.trainsetpath = '/private/luyujie/obstacle_detector/obstacle_detector/data/obstacle2d/ImageSets/train0829.txt'
        self.valsetpath = '/private/luyujie/obstacle_detector/obstacle_detector/data/obstacle2d/ImageSets/val0629.txt'
        self.imagepath = '/private/luyujie/obstacle_detector/obstacle_detector/data/obstacle2d/JPGImages'
        self.trainset = ['index0']
        self.valset = ['index0']
        with open(self.trainsetpath) as tsf:
            for line in tsf:
                self.trainset.append(
                    os.path.join(self.imagepath,
                                 line.strip() + '.jpg'))
        #print self.trainset[1]

        # val0629.txt
        with open(self.valsetpath) as vsf:
            for line in vsf:
                self.valset.append(
                    os.path.join(self.imagepath,
                                 line.strip() + '.jpg'))
        # deal with class names
        #print self.valset[2]
        cats = [
            cat['name'] for cat in self.coco.loadCats(self.coco.getCatIds())
        ]
        self.classes = ['__background__'] + cats
        #print('>>>> cats {}'.format(cats))
        self.num_classes = len(self.classes)
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._class_to_coco_ind = dict(zip(cats, self.coco.getCatIds()))
        self._coco_ind_to_class_ind = dict([(self._class_to_coco_ind[cls],
                                             self._class_to_ind[cls])
                                            for cls in self.classes[1:]])

        # load image file names
        self.image_set_index = self._load_image_set_index()
        self.num_images = len(self.image_set_index)
        print 'num_images', self.num_images
        self.mask_size = mask_size
        self.binary_thresh = binary_thresh
        self.load_mask = load_mask

        # deal with data name
        view_map = {
            'minival2014': 'val2014',
            'sminival2014': 'val2014',
            'valminusminival2014': 'val2014',
            'test-dev2015': 'test2015',
            'test2015': 'test2015'
        }

        self.data_name = view_map[
            image_set] if image_set in view_map else image_set

    def _get_ann_file(self):
        """ self.data_path / annotations / instances_train2014.json """
        prefix = 'instances' if 'test' not in self.image_set else 'image_info'
        path = os.path.join(self.data_path, 'annotations',
                            prefix + '_' + self.image_set + '.json')
        print('>>>>>>>> get_ann_file {}'.format(path))
        return os.path.join(self.data_path, 'annotations',
                            prefix + '_' + self.image_set + '.json')

    def _load_image_set_index(self):
        """ image id: int """
        image_ids = self.coco.getImgIds()
        return image_ids

    def image_path_from_index(self, index):
        """ example: images / train2014 / COCO_train2014_000000119993.jpg """
        #self.data_name = 'train2014'
        #filename = 'COCO_%s_%012d.jpg' % (self.data_name, index)
        #data_name = self.data_name
        #if data_name == 'train1030':
        #    data_name = 'train2014'
        filename = 'COCO_%s_%012d.jpg' % (self.data_name, index)

        image_path = os.path.join(self.data_path, 'images', self.data_name,
                                  filename)
        #print '>> self.data_name'
        #print self.data_name

        #if self.data_name == 'train2014':
        #    image_path = self.trainset[index]
        #if self.data_name == 'val2014':
        #    image_path = self.valset[index]

        #print '>> index'
        #print index
        #print '>> self.trainsetpath'
        #print self.trainset[0]
        #print '>> self.valsetpath'
        #print self.valsetpath[0]
        #print '>> image_path'
        #print image_path
        assert os.path.exists(image_path), 'Path does not exist: {}'.format(
            image_path)
        return image_path

    def gt_roidb(self):
        cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl')
        index_file = os.path.join(self.cache_path,
                                  self.name + '_index_roidb.pkl')
        sindex_file = os.path.join(self.cache_path,
                                   self.name + '_sindex_roidb.pkl')
        if os.path.exists(cache_file) and os.path.exists(index_file):
            with open(cache_file, 'rb') as fid:
                roidb = cPickle.load(fid)
            with open(index_file, 'rb') as fid:
                self.image_set_index = cPickle.load(fid)
            print '{} gt roidb loaded from {}'.format(self.name, cache_file)
            return roidb

        gt_roidb = []
        valid_id = []
        vids = []
        ct = 0
        for index in self.image_set_index:
            roientry, flag = self._load_coco_annotation(index)
            if flag:
                gt_roidb.append(roientry)
                valid_id.append(index)
                vids.append(ct)
            ct = ct + 1
        self.image_set_index = valid_id

        with open(cache_file, 'wb') as fid:
            cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
        with open(index_file, 'wb') as fid:
            cPickle.dump(valid_id, fid, cPickle.HIGHEST_PROTOCOL)
        with open(sindex_file, 'wb') as fid:
            cPickle.dump(vids, fid, cPickle.HIGHEST_PROTOCOL)

        print 'wrote gt roidb to {}'.format(cache_file)
        return gt_roidb

    def _load_coco_annotation(self, index):
        def _polys2boxes(polys):
            boxes_from_polys = np.zeros((len(polys), 4), dtype=np.float32)
            for i in range(len(polys)):
                poly = polys[i]
                x0 = min(min(p[::2]) for p in poly)
                x1 = max(max(p[::2]) for p in poly)
                y0 = min(min(p[1::2]) for p in poly)
                y1 = max(max(p[1::2]) for p in poly)
                boxes_from_polys[i, :] = [x0, y0, x1, y1]
            return boxes_from_polys

        """
        coco ann: [u'segmentation', u'area', u'iscrowd', u'image_id', u'bbox', u'category_id', u'id']
        iscrowd:
            crowd instances are handled by marking their overlaps with all categories to -1
            and later excluded in training
        bbox:
            [x1, y1, w, h]
        :param index: coco image id
        :return: roidb entry
        """
        im_ann = self.coco.loadImgs(index)[0]
        width = im_ann['width']
        height = im_ann['height']

        annIds = self.coco.getAnnIds(imgIds=index, iscrowd=False)
        objs = self.coco.loadAnns(annIds)

        annIds = self.coco.getAnnIds(imgIds=index, iscrowd=True)
        objsc = self.coco.loadAnns(annIds)

        # sanitize bboxes
        valid_objs = []
        for obj in objs:
            x, y, w, h = obj['bbox']
            x1 = np.max((0, x))
            y1 = np.max((0, y))
            #yujie
            #x2 = np.min((width - 1, x1 + np.max((0, w - 1))))
            #y2 = np.min((height - 1, y1 + np.max((0, h - 1))))
            x2 = np.min((width, x1 + np.max((0, w))))
            y2 = np.min((height, y1 + np.max((0, h))))
            if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
                obj['clean_bbox'] = [x1, y1, x2, y2]
                valid_objs.append(obj)

        valid_objsc = []
        for obj in objsc:
            x, y, w, h = obj['bbox']
            x1 = np.max((0, x))
            y1 = np.max((0, y))
            #yujie
            x2 = np.min((width, x1 + np.max((0, w))))
            y2 = np.min((height, y1 + np.max((0, h))))
            if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
                obj['clean_bbox'] = [x1, y1, x2, y2]
                valid_objsc.append(obj)

        objs = valid_objs
        objc = valid_objsc
        num_objs = len(objs)
        num_objsc = len(objsc)

        boxes = np.zeros((num_objs, 4), dtype=np.uint16)
        boxesc = np.zeros((num_objsc, 4), dtype=np.uint16)
        gt_classes = np.zeros((num_objs), dtype=np.int32)
        overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)

        #for ix, obj in enumerate(objsc):
        #    boxesc[ix, :] = obj['clean_bbox']

        for ix, obj in enumerate(objs):
            cls = self._coco_ind_to_class_ind[obj['category_id']]
            boxes[ix, :] = obj['clean_bbox']
            gt_classes[ix] = cls
            if obj['iscrowd']:
                overlaps[ix, :] = -1.0
            else:
                overlaps[ix, cls] = 1.0

        ws = boxes[:, 2] - boxes[:, 0]
        hs = boxes[:, 3] - boxes[:, 1]

        flag = True

        roi_rec = {
            'image': self.image_path_from_index(index),
            'height': height,
            'width': width,
            'boxes': boxes,
            'boxesc': boxesc,
            'gt_classes': gt_classes,
            'gt_overlaps': overlaps,
            'max_classes': overlaps.argmax(axis=1),
            'max_overlaps': overlaps.max(axis=1),
            'flipped': False
        }
        #print '>>>>>> roi_rec'
        #print roi_rec
        if self.load_mask:
            # we only care about valid polygons
            print '>>>>>>> load mask'
            segs = []
            for obj in objs:
                if not isinstance(obj['segmentation'], list):
                    # This is a crowd box
                    segs.append([])
                else:
                    segs.append([
                        np.array(p) for p in obj['segmentation'] if len(p) >= 6
                    ])

            roi_rec['gt_masks'] = segs

            # Uncomment if you need to compute gts based on segmentation masks
            # seg_boxes = _polys2boxes(segs)
            # roi_rec['mask_boxes'] = seg_boxes
        return roi_rec, flag

    def evaluate_detections(self,
                            detections,
                            ann_type='bbox',
                            all_masks=None,
                            extra_path=''):
        """ detections_val2014_results.json """
        res_folder = os.path.join(self.result_path + extra_path, 'results')
        if not os.path.exists(res_folder):
            os.makedirs(res_folder)
        res_file = os.path.join(res_folder,
                                'detections_%s_results.json' % self.image_set)
        print('>>>> res_file {}'.format(res_file))
        self._write_coco_results(detections, res_file, ann_type, all_masks)
        #yujie
        print('>>>>> evaluate_detections info_str')
        info_str = self._do_python_eval(res_file, res_folder, ann_type)
        return info_str
        '''
        if 'test' not in self.image_set:
            info_str = self._do_python_eval(res_file, res_folder, ann_type)
            return info_str
        '''

    def evaluate_sds(self, all_boxes, all_masks):
        #info_str = self.evaluate_detections(all_boxes, 'segm', all_masks)
        info_str = self.evaluate_detections(all_boxes, 'bbox', all_masks)
        return info_str

    def _write_coco_results(self, all_boxes, res_file, ann_type, all_masks):
        """ example results
        [{"image_id": 42,
          "category_id": 18,
          "bbox": [258.15,41.29,348.26,243.78],
          "score": 0.236}, ...]
        """
        all_im_info = [{
            'index': index,
            'height': self.coco.loadImgs(index)[0]['height'],
            'width': self.coco.loadImgs(index)[0]['width']
        } for index in self.image_set_index]
        print '>>>>>>>> _write_coco_results ann_type'
        print ann_type
        if ann_type == 'bbox':
            data_pack = [{
                'cat_id': self._class_to_coco_ind[cls],
                'cls_ind': cls_ind,
                'cls': cls,
                'ann_type': ann_type,
                'binary_thresh': self.binary_thresh,
                'all_im_info': all_im_info,
                'boxes': all_boxes[cls_ind]
            } for cls_ind, cls in enumerate(self.classes)
                         if not cls == '__background__']
        elif ann_type == 'segm':
            data_pack = [{
                'cat_id': self._class_to_coco_ind[cls],
                'cls_ind': cls_ind,
                'cls': cls,
                'ann_type': ann_type,
                'binary_thresh': self.binary_thresh,
                'all_im_info': all_im_info,
                'boxes': all_boxes[cls_ind],
                'masks': all_masks[cls_ind]
            } for cls_ind, cls in enumerate(self.classes)
                         if not cls == '__background__']
        else:
            print 'unimplemented ann_type: ' + ann_type
        # results = coco_results_one_category_kernel(data_pack[1])
        # print results[0]
        pool = mp.Pool(mp.cpu_count())
        results = pool.map(coco_results_one_category_kernel, data_pack)
        pool.close()
        pool.join()
        results = sum(results, [])
        print 'Writing results json to %s' % res_file
        with open(res_file, 'w') as f:
            json.dump(results, f, sort_keys=True, indent=4)

    def _do_python_eval(self, res_file, res_folder, ann_type):
        print 'do python eval'
        coco_dt = self.coco.loadRes(res_file)
        #print('>>>> do python eval resfile {}'.format(res_file))
        coco_eval = COCOeval(self.coco, coco_dt)
        coco_eval.params.useSegm = (ann_type == 'segm')
        coco_eval.evaluate()
        coco_eval.accumulate()
        info_str = self._print_detection_metrics(coco_eval)

        eval_file = os.path.join(res_folder,
                                 'detections_%s_results.pkl' % self.image_set)
        with open(eval_file, 'w') as f:
            cPickle.dump(coco_eval, f, cPickle.HIGHEST_PROTOCOL)
        print 'coco eval results saved to %s' % eval_file
        info_str += 'coco eval results saved to %s\n' % eval_file
        return info_str

    def _print_detection_metrics(self, coco_eval):
        info_str = ''
        IoU_lo_thresh = 0.4
        IoU_hi_thresh = 0.4

        def _get_thr_ind(coco_eval, thr):
            ind = np.where((coco_eval.params.iouThrs > thr - 1e-5)
                           & (coco_eval.params.iouThrs < thr + 1e-5))[0][0]
            iou_thr = coco_eval.params.iouThrs[ind]
            assert np.isclose(iou_thr, thr)
            return ind

        ind_lo = _get_thr_ind(coco_eval, IoU_lo_thresh)
        ind_hi = _get_thr_ind(coco_eval, IoU_hi_thresh)

        # precision has dims (iou, recall, cls, area range, max dets)
        # area range index 0: all area ranges
        # max dets index 2: 100 per image

        precision = \
            coco_eval.eval['precision'][ind_lo:(ind_hi + 1), :, :, 0, 2]

        recall = \
            coco_eval.eval['recall'][ind_lo:(ind_hi + 1), :, 0, 2]

        ap_default = np.mean(precision[precision > -1])
        ar_default = np.mean(recall[recall > -1])

        print '~~~~ Mean and per-category AP @ IoU=%.2f,%.2f] ~~~~' % (
            IoU_lo_thresh, IoU_hi_thresh)
        info_str += '~~~~ Mean and per-category AP @ IoU=%.2f,%.2f] ~~~~\n' % (
            IoU_lo_thresh, IoU_hi_thresh)
        print '%-15s %5.1f' % ('all', 100 * ap_default)
        info_str += '%-15s %5.1f\n' % ('all', 100 * ap_default)
        print('>>>> self.classes {}'.format(self.classes))
        for cls_ind, cls in enumerate(self.classes):
            if cls == '__background__':
                continue
            # minus 1 because of __background__
            precision = coco_eval.eval['precision'][ind_lo:(ind_hi + 1), :,
                                                    cls_ind - 1, 0, 2]
            #print('>>>> coco eval precision {}'.format(coco_eval.eval['precision']))
            ap = np.mean(precision[precision > -1])
            print '%-15s %5.1f' % (cls, 100 * ap)
            info_str += '%-15s %5.1f\n' % (cls, 100 * ap)

        print '~~~~ Mean and per-category AR @ IoU=%.2f,%.2f] ~~~~' % (
            IoU_lo_thresh, IoU_hi_thresh)
        info_str += '~~~~ Mean and per-category AR @ IoU=%.2f,%.2f] ~~~~\n' % (
            IoU_lo_thresh, IoU_hi_thresh)
        print '%-15s %5.1f' % ('all', 100 * ar_default)
        info_str += '%-15s %5.1f\n' % ('all', 100 * ar_default)
        print('>>>> self.classes {}'.format(self.classes))
        for cls_ind, cls in enumerate(self.classes):
            if cls == '__background__':
                continue
            # minus 1 because of __background__
            recall = coco_eval.eval['recall'][ind_lo:(ind_hi + 1), cls_ind - 1,
                                              0, 2]
            #print('>>>> coco eval precision {}'.format(coco_eval.eval['precision']))
            ar = np.mean(recall[recall > -1])
            print '%-15s %5.1f' % (cls, 100 * ar)
            info_str += '%-15s %5.1f\n' % (cls, 100 * ar)

        print '~~~~ Summary metrics ~~~~'
        coco_eval.summarize()

        return info_str