Beispiel #1
0
def make_dataloader(FG):
    x, y, train_idx, test_idx, ratio = fold_split(
        k=FG.fold, running_k=FG.running_fold, labels=FG.labels,
        subject_ids_path=os.path.join(FG.data_root, 'subject_ids.pkl'),
        diagnosis_path=os.path.join(FG.data_root, 'diagnosis.pkl'))
    # x = image, y=target
    trainset = ADNIDataset(FG.labels, FG.data_root, x[train_idx], y[train_idx],
                           transform_preset('random_crop'))
    validset = ADNIDataset(FG.labels, FG.data_root, x[test_idx], y[test_idx])

    trainloader = DataLoader(trainset, batch_size=FG.batch_size,
                             shuffle=True, pin_memory=True,
                             num_workers=4)
    validloader = DataLoader(validset, batch_size=len(FG.devices),
                             shuffle=False, pin_memory=True,
                             num_workers=4)
    return trainloader, validloader
Beispiel #2
0
                                     'info_loss',
                                     opts=dict(showlegend=True,
                                               title='info_loss',
                                               ytickmin=0,
                                               ytinkmax=10)),
                    acc=Scalar(vis,
                               'Accuracy',
                               opts=dict(showlegend=True,
                                         title='Accuracy',
                                         ytickmin=0,
                                         ytinkmax=2.0)),
                    inputs=Image3D(vis, 'inputs'),
                    outputs=Image3D(vis, 'outputs'))

    # create train set,  x = image, y=target
    x, y, train_idx, test_idx, ratio = fold_split(FG)
    #transform=Compose([ToWoldCoordinateSystem(), Normalize((0.5, 0.9)), ToTensor()])
    transform = Compose([ToWoldCoordinateSystem(), ToTensor()])

    trainset = ADNIDataset(FG, x[train_idx], y[train_idx], transform=transform)
    testset = ADNIDataset(FG, x[test_idx], y[test_idx], transform=transform)

    trainloader = DataLoader(trainset,
                             batch_size=FG.batch_size,
                             shuffle=True,
                             pin_memory=True,
                             num_workers=4)
    testloader = DataLoader(testset,
                            batch_size=FG.batch_size,
                            shuffle=True,
                            num_workers=4,
Beispiel #3
0
def main():
    # option flags
    FLG = train_args()

    # torch setting
    device = torch.device('cuda:{}'.format(FLG.devices[0]))
    torch.backends.cudnn.benchmark = True
    torch.cuda.set_device(FLG.devices[0])

    # create summary and report the option
    visenv = FLG.model
    summary = Summary(port=39199, env=visenv)
    summary.viz.text(argument_report(FLG, end='<br>'),
                     win='report' + str(FLG.running_fold))
    train_report = ScoreReport()
    valid_report = ScoreReport()
    timer = SimpleTimer()
    fold_str = 'fold' + str(FLG.running_fold)
    best_score = dict(epoch=0, loss=1e+100, accuracy=0)

    #### create dataset ###
    # kfold split
    target_dict = np.load(pjoin(FLG.data_root, 'target_dict.pkl'))
    trainblock, validblock, ratio = fold_split(
        FLG.fold, FLG.running_fold, FLG.labels,
        np.load(pjoin(FLG.data_root, 'subject_indices.npy')), target_dict)

    def _dataset(block, transform):
        return ADNIDataset(FLG.labels,
                           pjoin(FLG.data_root, FLG.modal),
                           block,
                           target_dict,
                           transform=transform)

    # create train set
    trainset = _dataset(trainblock, transform_presets(FLG.augmentation))

    # create normal valid set
    validset = _dataset(
        validblock,
        transform_presets('nine crop' if FLG.augmentation ==
                          'random crop' else 'no augmentation'))

    # each loader
    trainloader = DataLoader(trainset,
                             batch_size=FLG.batch_size,
                             shuffle=True,
                             num_workers=4,
                             pin_memory=True)
    validloader = DataLoader(validset, num_workers=4, pin_memory=True)

    # data check
    # for image, _ in trainloader:
    #     summary.image3d('asdf', image)

    # create model
    def kaiming_init(tensor):
        return kaiming_normal_(tensor, mode='fan_out', nonlinearity='relu')

    if 'plane' in FLG.model:
        model = Plane(len(FLG.labels),
                      name=FLG.model,
                      weights_initializer=kaiming_init)
    elif 'resnet11' in FLG.model:
        model = resnet11(len(FLG.labels),
                         FLG.model,
                         weights_initializer=kaiming_init)
    elif 'resnet19' in FLG.model:
        model = resnet19(len(FLG.labels),
                         FLG.model,
                         weights_initializer=kaiming_init)
    elif 'resnet35' in FLG.model:
        model = resnet35(len(FLG.labels),
                         FLG.model,
                         weights_initializer=kaiming_init)
    elif 'resnet51' in FLG.model:
        model = resnet51(len(FLG.labels),
                         FLG.model,
                         weights_initializer=kaiming_init)
    else:
        raise NotImplementedError(FLG.model)

    print_model_parameters(model)
    model = torch.nn.DataParallel(model, FLG.devices)
    model.to(device)

    # criterion
    train_criterion = torch.nn.CrossEntropyLoss(weight=torch.Tensor(
        list(map(lambda x: x * 2, reversed(ratio))))).to(device)
    valid_criterion = torch.nn.CrossEntropyLoss().to(device)

    # TODO resume
    # optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=FLG.lr,
                                 weight_decay=FLG.l2_decay)
    # scheduler
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, FLG.lr_gamma)

    start_epoch = 0
    global_step = start_epoch * len(trainloader)
    pbar = None
    for epoch in range(1, FLG.max_epoch + 1):
        timer.tic()
        scheduler.step()
        summary.scalar('lr',
                       fold_str,
                       epoch - 1,
                       optimizer.param_groups[0]['lr'],
                       ytickmin=0,
                       ytickmax=FLG.lr)

        # train()
        torch.set_grad_enabled(True)
        model.train(True)
        train_report.clear()
        if pbar is None:
            pbar = tqdm(total=len(trainloader) * FLG.validation_term,
                        desc='Epoch {:<3}-{:>3} train'.format(
                            epoch, epoch + FLG.validation_term - 1))
        for images, targets in trainloader:
            images = images.cuda(device, non_blocking=True)
            targets = targets.cuda(device, non_blocking=True)

            optimizer.zero_grad()

            outputs = model(images)
            loss = train_criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            train_report.update_true(targets)
            train_report.update_score(F.softmax(outputs, dim=1))

            summary.scalar('loss',
                           'train ' + fold_str,
                           global_step / len(trainloader),
                           loss.item(),
                           ytickmin=0,
                           ytickmax=1)

            pbar.update()
            global_step += 1

        if epoch % FLG.validation_term != 0:
            timer.toc()
            continue
        pbar.close()

        # valid()
        torch.set_grad_enabled(False)
        model.eval()
        valid_report.clear()
        pbar = tqdm(total=len(validloader),
                    desc='Epoch {:>3} valid'.format(epoch))
        for images, targets in validloader:
            true = targets
            npatchs = 1
            if len(images.shape) == 6:
                _, npatchs, c, x, y, z = images.shape
                images = images.view(-1, c, x, y, z)
                targets = torch.cat([targets
                                     for _ in range(npatchs)]).squeeze()
            images = images.cuda(device, non_blocking=True)
            targets = targets.cuda(device, non_blocking=True)

            output = model(images)
            loss = valid_criterion(output, targets)

            valid_report.loss += loss.item()

            if npatchs == 1:
                score = F.softmax(output, dim=1)
            else:
                score = torch.mean(F.softmax(output, dim=1),
                                   dim=0,
                                   keepdim=True)
            valid_report.update_true(true)
            valid_report.update_score(score)

            pbar.update()
        pbar.close()

        # report
        vloss = valid_report.loss / len(validloader)
        summary.scalar('accuracy',
                       'train ' + fold_str,
                       epoch,
                       train_report.accuracy,
                       ytickmin=-0.05,
                       ytickmax=1.05)

        summary.scalar('loss',
                       'valid ' + fold_str,
                       epoch,
                       vloss,
                       ytickmin=0,
                       ytickmax=0.8)
        summary.scalar('accuracy',
                       'valid ' + fold_str,
                       epoch,
                       valid_report.accuracy,
                       ytickmin=-0.05,
                       ytickmax=1.05)

        is_best = False
        if best_score['loss'] > vloss:
            best_score['loss'] = vloss
            best_score['epoch'] = epoch
            best_score['accuracy'] = valid_report.accuracy
            is_best = True

        print('Best Epoch {}: validation loss {} accuracy {}'.format(
            best_score['epoch'], best_score['loss'], best_score['accuracy']))

        # save
        if isinstance(model, torch.nn.DataParallel):
            state_dict = model.module.state_dict()
        else:
            state_dict = model.state_dict()

        save_checkpoint(
            dict(epoch=epoch,
                 best_score=best_score,
                 state_dict=state_dict,
                 optimizer_state_dict=optimizer.state_dict()),
            FLG.checkpoint_root, FLG.running_fold, FLG.model, is_best)
        pbar = None
        timer.toc()
        print('Time elapse {}h {}m {}s'.format(*timer.total()))
Beispiel #4
0
def test(FLG):
    device = torch.device('cuda:{}'.format(FLG.devices[0]))
    torch.set_grad_enabled(False)
    torch.backends.cudnn.benchmark = True
    torch.cuda.set_device(FLG.devices[0])
    report = [ScoreReport() for _ in range(FLG.fold)]
    overall_report = ScoreReport()
    target_dict = np.load(pjoin(FLG.data_root, 'target_dict.pkl'))

    if 'plane' in FLG.model:
        model = Plane(len(FLG.labels), name=FLG.model)
    elif 'resnet11' in FLG.model:
        model = resnet11(len(FLG.labels), FLG.model)
    elif 'resnet19' in FLG.model:
        model = resnet19(len(FLG.labels), FLG.model)
    elif 'resnet35' in FLG.model:
        model = resnet35(len(FLG.labels), FLG.model)
    elif 'resnet51' in FLG.model:
        model = resnet51(len(FLG.labels), FLG.model)
    else:
        raise NotImplementedError(FLG.model)
    model.to(device)

    for running_fold in range(FLG.fold):
        _, validblock, _ = fold_split(
            FLG.fold, running_fold, FLG.labels,
            np.load(pjoin(FLG.data_root, 'subject_indices.npy')), target_dict)
        validset = ADNIDataset(FLG.labels,
                               pjoin(FLG.data_root, FLG.modal),
                               validblock,
                               target_dict,
                               transform=transform_presets(FLG.augmentation))
        validloader = DataLoader(validset, pin_memory=True)

        epoch, _ = load_checkpoint(model, FLG.checkpoint_root, running_fold,
                                   FLG.model, None, True)
        model.eval()
        for image, target in validloader:
            true = target
            npatches = 1
            if len(image.shape) == 6:
                _, npatches, c, x, y, z = image.shape
                image = image.view(-1, c, x, y, z)
                target = torch.stack([target
                                      for _ in range(npatches)]).squeeze()
            image = image.cuda(device, non_blocking=True)
            target = target.cuda(device, non_blocking=True)

            output = model(image)

            if npatches == 1:
                score = F.softmax(output, dim=1)
            else:
                score = torch.mean(F.softmax(output, dim=1),
                                   dim=0,
                                   keepdim=True)

            report[running_fold].update_true(true)
            report[running_fold].update_score(score)

            overall_report.update_true(true)
            overall_report.update_score(score)

        print('At {}'.format(epoch))
        print(
            metrics.classification_report(report[running_fold].y_true,
                                          report[running_fold].y_pred,
                                          target_names=FLG.labels,
                                          digits=4))
        print('accuracy {}'.format(report[running_fold].accuracy))

    print('over all')
    print(
        metrics.classification_report(overall_report.y_true,
                                      overall_report.y_pred,
                                      target_names=FLG.labels,
                                      digits=4))
    print('accuracy {}'.format(overall_report.accuracy))

    with open(FLG.model + '_stat.pkl', 'wb') as f:
        pickle.dump(report, f, pickle.HIGHEST_PROTOCOL)
Beispiel #5
0
def test(FLG):
    device = torch.device('cuda:{}'.format(FLG.devices[0]))
    torch.set_grad_enabled(False)
    torch.backends.cudnn.benchmark = True
    torch.cuda.set_device(FLG.devices[0])
    report = [ScoreReport() for _ in range(FLG.fold)]
    overall_report = ScoreReport()
    target_dict = np.load(pjoin(FLG.data_root, 'target_dict.pkl'))

    with open(FLG.model + '_stat.pkl', 'rb') as f:
        stat = pickle.load(f)
    summary = Summary(port=10001, env=str(FLG.model) + 'CAM')

    class Feature(object):
        def __init__(self):
            self.blob = None

        def capture(self, blob):
            self.blob = blob

    if 'plane' in FLG.model:
        model = Plane(len(FLG.labels), name=FLG.model)
    elif 'resnet11' in FLG.model:
        model = resnet11(len(FLG.labels), FLG.model)
    elif 'resnet19' in FLG.model:
        model = resnet19(len(FLG.labels), FLG.model)
    elif 'resnet35' in FLG.model:
        model = resnet35(len(FLG.labels), FLG.model)
    elif 'resnet51' in FLG.model:
        model = resnet51(len(FLG.labels), FLG.model)
    else:
        raise NotImplementedError(FLG.model)
    model.to(device)

    ad_h = []
    nl_h = []
    adcams = np.zeros((4, 3, 112, 144, 112), dtype="f8")
    nlcams = np.zeros((4, 3, 112, 144, 112), dtype="f8")
    sb = [9.996e-01, 6.3e-01, 1.001e-01]
    for running_fold in range(FLG.fold):
        _, validblock, _ = fold_split(
            FLG.fold, running_fold, FLG.labels,
            np.load(pjoin(FLG.data_root, 'subject_indices.npy')), target_dict)
        validset = ADNIDataset(FLG.labels,
                               pjoin(FLG.data_root, FLG.modal),
                               validblock,
                               target_dict,
                               transform=transform_presets(FLG.augmentation))
        validloader = DataLoader(validset, pin_memory=True)

        epoch, _ = load_checkpoint(model, FLG.checkpoint_root, running_fold,
                                   FLG.model, None, True)
        model.eval()
        feature = Feature()

        def hook(mod, inp, oup):
            return feature.capture(oup.data.cpu().numpy())

        _ = model.layer4.register_forward_hook(hook)
        fc_weights = model.fc.weight.data.cpu().numpy()

        transformer = Compose([CenterCrop((112, 144, 112)), ToFloatTensor()])
        im, _ = original_load(validblock, target_dict, transformer, device)

        for image, target in validloader:
            true = target
            npatches = 1
            if len(image.shape) == 6:
                _, npatches, c, x, y, z = image.shape
                image = image.view(-1, c, x, y, z)
                target = torch.stack([target
                                      for _ in range(npatches)]).squeeze()
            image = image.cuda(device, non_blocking=True)
            target = target.cuda(device, non_blocking=True)

            output = model(image)

            if npatches == 1:
                score = F.softmax(output, dim=1)
            else:
                score = torch.mean(F.softmax(output, dim=1),
                                   dim=0,
                                   keepdim=True)

            report[running_fold].update_true(true)
            report[running_fold].update_score(score)

            overall_report.update_true(true)
            overall_report.update_score(score)

            print(target)
            if FLG.cam:
                s = 0
                cams = []
                if target[0] == 0:
                    s = score[0][0]
                    #s = s.cpu().numpy()[()]
                    cams = adcams
                else:
                    sn = score[0][1]
                    #s = s.cpu().numpy()[()]
                    cams = nlcams
                if s > sb[0]:
                    cams[0] = summary.cam3d(FLG.labels[target],
                                            im,
                                            feature.blob,
                                            fc_weights,
                                            target,
                                            cams[0],
                                            s,
                                            num_images=5)
                elif s > sb[1]:
                    cams[1] = summary.cam3d(FLG.labels[target],
                                            im,
                                            feature.blob,
                                            fc_weights,
                                            target,
                                            cams[1],
                                            s,
                                            num_images=5)
                elif s > sb[2]:
                    cams[2] = summary.cam3d(FLG.labels[target],
                                            im,
                                            feature.blob,
                                            fc_weights,
                                            target,
                                            cams[2],
                                            s,
                                            num_images=5)
                else:
                    cams[3] = summary.cam3d(FLG.labels[target],
                                            im,
                                            feature.blob,
                                            fc_weights,
                                            target,
                                            cams[3],
                                            s,
                                            num_images=5)
                #ad_h += [s]
                #nl_h += [sn]

        print('At {}'.format(epoch))
        print(
            metrics.classification_report(report[running_fold].y_true,
                                          report[running_fold].y_pred,
                                          target_names=FLG.labels,
                                          digits=4))
        print('accuracy {}'.format(report[running_fold].accuracy))

    #print(np.histogram(ad_h))
    #print(np.histogram(nl_h))

    print('over all')
    print(
        metrics.classification_report(overall_report.y_true,
                                      overall_report.y_pred,
                                      target_names=FLG.labels,
                                      digits=4))
    print('accuracy {}'.format(overall_report.accuracy))

    with open(FLG.model + '_stat.pkl', 'wb') as f:
        pickle.dump(report, f, pickle.HIGHEST_PROTOCOL)
Beispiel #6
0
def test_cam():
    with open(FLG.model + '_stat.pkl', 'rb') as f:
        stat = pickle.load(f)
    summary = Summary(port=10001, env=str(FLG.model) + 'CAM')

    class Feature(object):
        def __init__(self):
            self.blob = None

        def capture(self, blob):
            self.blob = blob

    # TODO: create model
    device = torch.device('cuda:{}'.format(FLG.devices[0]))
    torch.set_grad_enabled(False)
    torch.backends.cudnn.benchmark = True
    torch.cuda.set_device(FLG.devices[0])
    report = [ScoreReport() for _ in range(FLG.fold)]
    target_dict = np.load(pjoin(FLG.data_root, 'target_dict.pkl'))

    model = Plane(len(FLG.labels), name=FLG.model)
    model.to(device)

    transformer = Compose([CenterCrop((112, 144, 112)), ToFloatTensor()])

    def original_load(validblock):
        originalset = ADNIDataset(FLG.labels,
                                  pjoin(FLG.data_root, 'spm_normalized'),
                                  validblock,
                                  target_dict,
                                  transform=transformer)
        originloader = DataLoader(originalset, pin_memory=True)
        for image, target in originloader:
            if len(image.shape) == 6:
                _, npatches, c, x, y, z = image.shape
                image = image.view(-1, c, x, y, z)
                target = torch.stack([target
                                      for _ in range(npatches)]).squeeze()
            image = image.cuda(device, non_blocking=True)
            target = target.cuda(device, non_blocking=True)
            break
        return image, target

    hadcams = np.zeros((3, 112, 144, 112), dtype="f8")
    madcams = np.zeros((3, 112, 144, 112), dtype="f8")
    sadcams = np.zeros((3, 112, 144, 112), dtype="f8")
    zadcams = np.zeros((3, 112, 144, 112), dtype="f8")

    nlcams = np.zeros((4, 3, 112, 144, 112), dtype="f8")
    sb = [4.34444371e-16, 1.67179015e-18, 4.08813312e-23]
    #im, _ = original_load(validblock)
    for running_fold in range(FLG.fold):
        # validset
        _, validblock, _ = fold_split(
            FLG.fold, running_fold, FLG.labels,
            np.load(pjoin(FLG.data_root, 'subject_indices.npy')), target_dict)
        validset = ADNIDataset(FLG.labels,
                               pjoin(FLG.data_root, FLG.modal),
                               validblock,
                               target_dict,
                               transform=transformer)
        validloader = DataLoader(validset, pin_memory=True)

        load_checkpoint(model,
                        FLG.checkpoint_root,
                        running_fold,
                        FLG.model,
                        epoch=None,
                        is_best=True)
        model.eval()
        feature = Feature()

        def hook(mod, inp, oup):
            return feature.capture(oup.data.cpu().numpy())

        _ = model.layer4.register_forward_hook(hook)
        fc_weights = model.fc.weight.data.cpu().numpy()

        im, _ = original_load(validblock)
        ad_s = []
        for image, target in validloader:
            true = target
            npatches = 1
            if len(image.shape) == 6:
                _, npatches, c, x, y, z = image.shape
                image = image.view(-1, c, x, y, z)
                target = torch.stack([target
                                      for _ in range(npatches)]).squeeze()
            image = image.cuda(device, non_blocking=True)
            target = target.cuda(device, non_blocking=True)

            #_ = model(image.view(*image.shape))
            output = model(image)

            if npatches == 1:
                score = F.softmax(output, dim=1)
            else:
                score = torch.mean(F.softmax(output, dim=1),
                                   dim=0,
                                   keepdim=True)

            sa = score[0][1]
            #name = 'k'+str(running_fold)
            sa = sa.cpu().numpy()[()]
            print(score, score.shape)
            if true == torch.tensor([0]):
                if sa > sb[0]:
                    hadcams = summary.cam3d(FLG.labels[target],
                                            im,
                                            feature.blob,
                                            fc_weights,
                                            target,
                                            hadcams,
                                            sa,
                                            num_images=5)
                elif sa > sb[1]:
                    madcams = summary.cam3d(FLG.labels[target],
                                            im,
                                            feature.blob,
                                            fc_weights,
                                            target,
                                            madcams,
                                            sa,
                                            num_images=5)
                elif sa > sb[2]:
                    sadcams = summary.cam3d(FLG.labels[target],
                                            im,
                                            feature.blob,
                                            fc_weights,
                                            target,
                                            sadcams,
                                            sa,
                                            num_images=5)
                else:
                    zadcams = summary.cam3d(FLG.labels[target],
                                            im,
                                            feature.blob,
                                            fc_weights,
                                            target,
                                            zadcams,
                                            sa,
                                            num_images=5)
            else:
                if s > sb[0]:
                    nlcams[0] = summary.cam3d(FLG.labels[target],
                                              im,
                                              feature.blob,
                                              fc_weights,
                                              target,
                                              nlcams[0],
                                              sr,
                                              num_images=5)
                elif sr > sb[1]:
                    nlcams[1] = summary.cam3d(FLG.labels[target],
                                              im,
                                              feature.blob,
                                              fc_weights,
                                              target,
                                              nlcams[1],
                                              sr,
                                              num_images=5)
                elif sr > sb[2]:
                    nlcams[2] = summary.cam3d(FLG.labels[target],
                                              im,
                                              feature.blob,
                                              fc_weights,
                                              target,
                                              nlcams[2],
                                              sr,
                                              num_images=5)
                else:
                    nlcams[3] = summary.cam3d(FLG.labels[target],
                                              im,
                                              feature.blob,
                                              fc_weights,
                                              target,
                                              nlcams[3],
                                              sr,
                                              num_images=5)
            ad_s += [sr]
        print('histogram', np.histogram(ad_s))