Beispiel #1
0
def test_associative_recall_data():
    INPUT_DIMENSION_SIZE = 6
    ITEM_SIZE = 4
    MAX_EPISODE_SIZE = 20
    TRAINING_SIZE = 100
    MAX_INPUT_LENGTH = (ITEM_SIZE + 1) * (MAX_EPISODE_SIZE + 2)
    print(MAX_INPUT_LENGTH)
    # item = dataset.generate_associative_recall_items(input_size, item_size, episode_size)
    # print(item)

    print('Generating data sets...')
    input_sequence, output_sequence = dataset.generate_associative_recall_data_set(
        INPUT_DIMENSION_SIZE, ITEM_SIZE, MAX_EPISODE_SIZE, TRAINING_SIZE)
    # print input_sequence
    # print output_sequence

    print(input_sequence.shape)
    print(output_sequence.shape)

    for i in range(TRAINING_SIZE):
        # print(output_sequence[i].transpose())
        # print(input_sequence[i].transpose())
        visualization.show_associative_recall_data(
            output_sequence[i].transpose(), input_sequence[i].transpose(),
            "Output sequence $y^{(t)}$", "Input sequence $x^{(t)}$",
            "../experiment/associative_recall_%2d.pdf" % i)
# RNN = recurrent.SimpleRNN
# RNN = recurrent.GRU
RNN = recurrent.LSTM
HIDDEN_SIZE = 128 * 4
LAYERS = 1
# LAYERS = MAX_REPEAT_TIMES
BATCH_SIZE = 1024
FOLDER = "experiment_results/associative_recall/"
if not os.path.isdir(FOLDER):
    os.makedirs(FOLDER)
    print("create folder: %s" % FOLDER)

print()
print(time.strftime('%Y-%m-%d %H:%M:%S'))
print('Generating data sets...')
train_X, train_Y = dataset.generate_associative_recall_data_set(
    INPUT_DIMENSION_SIZE, ITEM_SIZE, MAX_EPISODE_SIZE, TRAINING_SIZE)
valid_X, valid_Y = dataset.generate_associative_recall_data_set(
    INPUT_DIMENSION_SIZE, ITEM_SIZE, MAX_EPISODE_SIZE, TRAINING_SIZE / 5)

matrix_list = []
matrix_list.append(train_X[0].transpose())
matrix_list.append(train_Y[0].transpose())
matrix_list.append(train_Y[0].transpose())
name_list = []
name_list.append("Input")
name_list.append("Target")
name_list.append("Predict")
show_matrix = visualization.PlotDynamicalMatrix(matrix_list, name_list)
random_index = np.random.randint(1, 128, 20)
for i in range(20):
    matrix_list_update = []