Beispiel #1
0
def test_nn():
    # 设置初始化参数,采用的是mnist数据集,为28*28的手写数字图像,隐含层100,输出层10代表0~9的数字,学习率初始设为0.2
    input_nodes = 28 * 28
    hidden_nodes = 100
    output_nodes = 10
    learning_rate = 0.2

    n = nn.NeuralNetwork(input_nodes, hidden_nodes, output_nodes,
                         learning_rate)

    # 第一步:开始训练
    print("start to train")
    train = True
    if train is True:
        # 训练方法1:用数据训练,采用较小的训练数据集
        training_data_list = dataset.get_data_list(
            "mnist_dataset/mnist_train.csv")
        count = 0  # 用于打印进度
        size = len(training_data_list)  # 用于打印进度
        for index, record in enumerate(training_data_list):
            label, inputs = dataset.get_scaled_data(record)
            targets = numpy.zeros(output_nodes) + 0.01
            targets[label] = 0.99
            n.train(inputs, targets)
            # 打印进度
            print_process(index, size)

        # 将最终的权值矩阵保存
        numpy.savetxt("w_input_hidden.txt", n.w_input_hidden)
        numpy.savetxt("w_hidden_output.txt", n.w_hidden_output)
    else:
        print("load data done")
        # 训练方法2:直接导入训练的结果(适用于已经有训练结果,即权值矩阵)
        n.load("mnist_dataset/w_input_hidden.txt",
               "mnist_dataset/w_hidden_output.txt")

    # 第二步:开始测试训练后的神经网络
    print("start to test")
    test_data_list = dataset.get_data_list("mnist_dataset/mnist_test.csv")
    scorecard = []  # 记分牌,保存每个测试数据的测试结果
    right = 0  # 正确总数
    size = len(test_data_list)  # 用于打印进度
    for index, record in enumerate(test_data_list):
        label, inputs = dataset.get_scaled_data(record)
        result = n.query(inputs)
        # 对比神经网络预测结果和标签
        if label == result:
            scorecard.append(1)
            right += 1
        else:
            scorecard.append(0)
        # 打印进度
        print_process(index, size)

    # 保存记分牌
    numpy.savetxt("scorecard.txt", scorecard)
    # 打印正确率
    print("right rate=", right / len(test_data_list) * 100, "%")
Beispiel #2
0
def test_data():
    training_data_list = dataset.get_data_list(
        "kdd/KDDTrain+_22Percent-normalization.txt.csv")
    print(training_data_list[0])
    label, data = get_kdd_data(training_data_list[0])
    print(data)
    print(len(data), label)
Beispiel #3
0
def test_dnn():
    layers = [28 * 28, 200, 100, 50, 10]
    learning_rate = 0.2

    dnn = DeepNeuralNetwork(layers, learning_rate)
    # 开始测试训练
    print("start to train")
    # 训练方法1:用数据训练,采用较小的训练数据集
    training_data_list = dataset.get_data_list(
        "mnist_dataset/mnist_train.csv")[:]  # 测试全部数据
    size = len(training_data_list)  # 用于打印进度
    for index, record in enumerate(training_data_list):
        label, inputs = dataset.get_scaled_data(record)
        targets = dataset.get_targets_data(layers[-1], label)
        dnn.layer_train(inputs, targets)
        # 打印进度
        print_process(index, size)

    # 开始测试
    print("start to test")
    test_data_list = dataset.get_data_list(
        "mnist_dataset/mnist_test.csv")
    scorecard = []  # 记分牌,保存每个测试数据的测试结果
    right = 0  # 正确总数
    size = len(test_data_list)  # 用于打印进度
    for index, record in enumerate(test_data_list):
        label, inputs = dataset.get_scaled_data(record)
        result = dnn.layer_query_result(inputs)
        # 对比神经网络预测结果和标签
        if label == result:
            scorecard.append(1)
            right += 1
        else:
            scorecard.append(0)
        # 打印进度
        print_process(index, size)

    # 打印正确率
    print("right rate=", right / len(test_data_list) * 100, "%")
    pass
Beispiel #4
0
def test_query():
    layers = [28 * 28, 100, 10]
    learning_rate = 0.2

    dnn = DeepNeuralNetwork(layers, learning_rate)

    training_data_list = dataset.get_data_list(
        "mnist_dataset/mnist_train_100.csv")

    for record in training_data_list[0:4]:
        label, inputs = dataset.get_scaled_data(record)
        targets = dataset.get_targets_data(layers[-1], label)
        outputs = dnn.layer_query(inputs, targets)
Beispiel #5
0
from dataset import ImageDataset, get_data_list
from model import YOLOV3
import tensorflow as tf
from tensorflow import keras

train_images, train_annotations, val_images, val_annotations, test_images, test_annotations = get_data_list(
)

dataset = ImageDataset(train_images,
                       train_annotations,
                       batch_size=1,
                       input_shape=(416, 416))
model = YOLOV3(input_shape=(416, 416, 3))
opt = keras.optimizers.Adam(1e-4)

for i in range(2000):
    images, labels = next(dataset)
    with tf.GradientTape() as tape:
        predictions = model(images)
        obj_loss, reg_loss, cls_loss, loss = model.loss(labels, predictions)
    grads = tape.gradient(loss, model.trainable_availables)
    opt.apply_gradients(zip(grads, model.trainable_availables))
    if i % 10 == 0:
        print(
            i,
            f'obj_loss={obj_loss},reg_loss={reg_loss},cls_loss={cls_loss},total loss={loss}'
        )

model.save('v1.h5')
Beispiel #6
0
def test_kdd_NSL():
    # 设置初始化参数,采用的是mnist数据集,为28*28的手写数字图像,隐含层100,输出层10代表0~9的数字,学习率初始设为0.2
    layers = [122, 100, 10, 5]
    learning_rate = 0.5

    n = DeepNeuralNetwork(layers, learning_rate)
    labels_count = [0, 0, 0, 0, 0]
    # 第一步:开始训练
    print("start to train")
    train = True
    if train is True:
        # 训练方法1:用数据训练,采用较小的训练数据集
        training_data_list = dataset.get_data_list(
            "kdd/KDDTrain+_22Percent-normalization.txt.csv")
        # training_data_list = dataset.get_data_list(
        #     "kdd/KDDTest-21-normalization.txt.csv")
        size = len(training_data_list)  # 用于打印进度
        for index, record in enumerate(training_data_list):
            label, inputs = get_kdd_data(record)
            targets = numpy.zeros(layers[-1]) + 0.01
            targets[label] = 0.99
            # targets = numpy.zeros(output_nodes)
            # targets[label] = 1
            n.layer_train(inputs, targets)
            # 打印进度
            print_process(index, size)
            # 统计标签数
            labels_count[label] += 1

        # 将最终的权值矩阵保存
        print(labels_count)
    else:
        print("load data done")
        # 训练方法2:直接导入训练的结果(适用于已经有训练结果,即权值矩阵)
        n.load("w_input_hidden_kdd.txt", "w_hidden_output_kdd.txt")

    # 第二步:开始测试训练后的神经网络
    labels_count = [0, 0, 0, 0, 0]
    print("start to test")
    test_data_list = dataset.get_data_list(
        "kdd/KDDTest-21-normalization.txt.csv")
    # test_data_list = dataset.get_data_list(
    #     "kdd/KDDTrain+_22Percent-normalization.txt.csv")

    scorecard = []  # 记分牌,保存每个测试数据的测试结果
    right = 0  # 正确总数
    count = 0  # 用于打印进度
    size = len(test_data_list)  # 用于打印进度
    for index, record in enumerate(test_data_list):
        label, inputs = get_kdd_data(record)
        result = n.layer_query_result(inputs)
        labels_count[label] += 1
        # 对比神经网络预测结果和标签
        if label == result:
            scorecard.append(1)
            right += 1
        else:
            scorecard.append(0)
        # 打印进度
        print_process(index, size)
    print(labels_count)
    # 打印正确率
    print("right rate=", right / len(test_data_list) * 100, "%")
Beispiel #7
0

pred_dict = "pred_dict.csv"
saved_dict = 'saved_dict.csv'
batch_size = 1000
width = 1280
height = 1024

_, ds_test = get_ds(saved_dict, 1, batch_size)
ds_test = ds_test.take(1)

model = create_model()
model.summary()
model.load_weights('mymodel.h5')

all_image_paths, all_x, all_y = get_data_list(saved_dict)
predictions = [model.predict(x, steps=1) for x in ds_test]


def save_xy():
    with open(pred_dict, "w") as f:
        for i, pred in enumerate(predictions[0]):
            f.write(all_image_paths[i] + "," + str(int(pred[0] * width)) + "," + str(int(pred[1] * height)) + "\n")
    print("write {} predictions to {}".format(batch_size, pred_dict))

for index, pred in enumerate(predictions[0]):
    print("{}: predicted: ({}, {})\tlabel: ({}, {})".format(all_image_paths[index],
                                                            int(pred[0] * width), 
                                                            int(pred[1] * height), 
                                                            all_x[index], all_y[index]))
save_xy()
Beispiel #8
0
import tensorflow as tf
from tensorflow import keras
from dataset import PascalVOCDataset, get_data_list
from model import SSD300

model = SSD300()
train_imgs, train_anns, val_imgs, val_anns, test_imgs, tes_anns = get_data_list(
)
train_dataset = PascalVOCDataset(split='train',
                                 images=train_imgs,
                                 annotations=train_anns,
                                 batch_size=1)
opt = keras.optimizers.Adam(1e-4)
for i in range(2000):
    imgs, true_locs, true_cls = next(train_dataset)
    with tf.GradientTape() as tape:
        pred_locs, pred_cls = model(imgs)
        loss, _, _, _ = model.loss(true_locs, true_cls, pred_locs, pred_cls)
    gradients = tape.gradient(loss, model.trainable_variables)
    opt.apply_gradients(zip(gradients, model.trainable_variables))
    if i % 20 == 0:
        print(i, ' LOSS:', loss.numpy())
model.save('ssd300.h5')