'--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} trainset = FashionAI('./', attribute=args.attribute, split=0.8, ci=args.ci, data_type='train', reset=False) testset = FashionAI('./', attribute=args.attribute, split=0.8, ci=args.ci, data_type='test', reset=trainset.reset) train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = DataLoader(testset, batch_size=args.test_batch_size, shuffle=True,
parser.add_argument( '--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} evalset = FashionAI('./', attribute=args.attribute, data_type='eval', reset=False) eval_loader = torch.utils.data.DataLoader(evalset, batch_size=args.batch_size, shuffle=True, **kwargs) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(180, 50) self.fc2 = nn.Linear(50, 8)