Beispiel #1
0
def test_pad_box_lists():
    box_a, box_b = (
        BBox2D(label=0, x=10, y=10, w=10, h=10),
        BBox2D(label=1, x=20, y=20, w=10, h=10),
    )
    uneven_list = [
        ([box_a], []),
        ([box_a, box_b], [box_b]),
        ([box_b], [box_a, box_b]),
        ([box_b], [box_a]),
    ]

    actual_result = pad_box_lists(uneven_list, max_boxes_per_img=3)
    expected_result = [
        (
            [box_a, padding_box, padding_box],
            [padding_box, padding_box, padding_box],
        ),
        ([box_a, box_b, padding_box], [box_b, padding_box, padding_box]),
        ([box_b, padding_box, padding_box], [box_a, box_b, padding_box]),
        ([box_b, padding_box, padding_box], [box_a, padding_box, padding_box]),
    ]
    for i in range(len(expected_result)):
        assert len(expected_result[i][0]) == len(actual_result[i][0])
        assert len(expected_result[i][1]) == len(actual_result[i][1])
        for t_index in range(2):
            for j in range(len(expected_result[i][t_index])):
                if np.isnan(expected_result[i][t_index][j].label):
                    assert np.isnan(actual_result[i][t_index][j].label)
                else:
                    assert (
                        expected_result[i][t_index][j]
                        == actual_result[i][t_index][j]
                    )
    assert True
Beispiel #2
0
def test_convert2torchvision_format():
    boxes = [
        BBox2D(label=0, x=10, y=10, w=10, h=10),
        BBox2D(label=1, x=20, y=20, w=10, h=10),
    ]

    actual_targets = prepare_bboxes(boxes)
    expected_targets = {
        "boxes": torch.Tensor([[10, 10, 20, 20], [20, 20, 30, 30]]),
        "labels": torch.LongTensor([0, 1]),
    }

    assert _same_dict(expected_targets, actual_targets)
Beispiel #3
0
def test_read_bounding_box_2d():
    annotation = [
        {
            "instance_id": "...",
            "label_id": 27,
            "label_name": "car",
            "x": 30,
            "y": 50,
            "width": 100,
            "height": 100,
        }
    ]
    definition = {
        "id": 1243,
        "name": "...",
        "description": "...",
        "format": "JSON",
        "spec": [{"label_id": 27, "label_name": "car"}],
    }
    label_mappings = {
        m["label_id"]: m["label_name"] for m in definition["spec"]
    }
    bbox = read_bounding_box_2d(annotation, label_mappings)

    assert bbox == [BBox2D(27, 30, 50, 100, 100)]
Beispiel #4
0
    def _load_bounding_boxes(self, raw_record):
        img_width = raw_record["image/width"].numpy()
        img_height = raw_record["image/height"].numpy()
        label = tf.sparse.to_dense(
            raw_record["image/object/class/label"]
        ).numpy()
        xmin = (
            tf.sparse.to_dense(raw_record["image/object/bbox/xmin"]).numpy()
            * img_width
        )
        xmax = (
            tf.sparse.to_dense(raw_record["image/object/bbox/xmax"]).numpy()
            * img_width
        )
        ymin = (
            tf.sparse.to_dense(raw_record["image/object/bbox/ymin"]).numpy()
            * img_height
        )
        ymax = (
            tf.sparse.to_dense(raw_record["image/object/bbox/ymax"]).numpy()
            * img_height
        )

        width = xmax - xmin
        height = ymax - ymin
        bboxes = [
            BBox2D(label, x, y, w, h)
            for label, x, y, w, h in zip(label, xmin, ymin, width, height)
        ]

        return bboxes
Beispiel #5
0
def test_convert2canonical():
    boxes_rcnn_format = [
        {
            "boxes": torch.Tensor(
                [[10.5, 10.5, 20.5, 20.5], [20.5, 20.5, 30.5, 30.5]]
            ),
            "labels": torch.Tensor([0, 1]),
            "scores": torch.FloatTensor([0.3, 0.9]),
        }
    ]
    actual_result = convert_bboxes2canonical(boxes_rcnn_format)
    expected_result = [
        [
            BBox2D(label=0, x=10.5, y=10.5, w=10, h=10, score=0.3),
            BBox2D(label=1, x=20.5, y=20.5, w=10, h=10, score=0.9),
        ]
    ]
    assert same_list_of_list_of_bboxes(actual_result, expected_result)
Beispiel #6
0
def test_plot_bboxes():
    cur_dir = pathlib.Path(__file__).parent.absolute()
    img = Image.open(
        str(cur_dir / "mock_data" / "simrun" / "captures" / "camera_000.png"))
    boxes = [
        BBox2D(label="car", x=1, y=1, w=2, h=3),
        BBox2D(label="tree", x=7, y=6, w=3, h=4),
        BBox2D(label="light", x=2, y=6, w=2, h=4),
    ]
    colors = [
        ImageColor.getcolor("green", "RGB"),
        ImageColor.getcolor("red", "RGB"),
        ImageColor.getcolor("green", "RGB"),
    ]

    with patch("datasetinsights.visualization.plots.ImageDraw.Draw") as mock:
        instance = mock.return_value
        plot_bboxes(img, boxes, colors)
        assert instance.rectangle.call_count == len(boxes)
        assert instance.multiline_text.call_count == len(boxes)
Beispiel #7
0
def test_convert2canonical_batch():
    boxes_rcnn_format = [
        {
            "boxes": torch.Tensor([[10.0, 10, 20, 20], [20, 20, 30, 30]]),
            "labels": torch.LongTensor([0, 1]),
        },
        {
            "boxes": torch.Tensor([[10, 10, 20, 20], [20, 20, 30, 30]]),
            "labels": torch.LongTensor([2, 3]),
        },
    ]
    actual_result = convert_bboxes2canonical(boxes_rcnn_format)
    expected_result = [
        [
            BBox2D(label=0, x=10, y=10, w=10, h=10),
            BBox2D(label=1, x=20, y=20, w=10, h=10),
        ],
        [
            BBox2D(label=2, x=10, y=10, w=10, h=10),
            BBox2D(label=3, x=20, y=20, w=10, h=10),
        ],
    ]
    assert same_list_of_list_of_bboxes(actual_result, expected_result)
Beispiel #8
0
    def _convert_to_bbox2d(single_bbox):
        """Convert the bbox record to BBox2D objects.

        Args:
            single_bbox (dict): raw bounding box information

        Return:
            canonical_bbox (BBox2D): canonical bounding box
        """
        label = single_bbox["label_id"]
        bbox = single_bbox["bbox"]

        canonical_bbox = BBox2D(
            x=bbox[0], y=bbox[1], w=bbox[2], h=bbox[3], label=label
        )
        return canonical_bbox
Beispiel #9
0
def convert_bboxes2canonical(bboxes):
    """
    convert bounding boxes from the format used by pytorch torchvision's
    faster rcnn model into our canonical format, a list of list of BBox2Ds.
    Faster RCNN format:
    https://github.com/pytorch/vision/blob/master/torchvision/models/
    detection/faster_rcnn.py#L45

    Args:
        bboxes (List[Dict[str, torch.Tensor()): A list of dictionaries. Each
        item in the list corresponds to the bounding boxes for one example.
        The dictionary must have the keys 'boxes' and 'labels'. The value for
        'boxes' is (``FloatTensor[N, 4]``): the ground-truth boxes in
        ``[x1, y1, x2, y2]`` format, with values between ``0`` and ``H`` and
        ``0`` and ``W``. The value for labels is (``Int64Tensor[N]``): the
        class label for each ground-truth box. If the dictionary has the key
        `scores` then these values are used for the confidence score of the
        BBox2D, otherwise the score is set to 1.

    Returns (list[List[BBox2D]]): Each element in the list corresponds to the
    list of bounding boxes for an example.

    """
    bboxes_batch = []
    for example in bboxes:
        all_coords = example["boxes"]
        num_boxes = all_coords.shape[0]
        labels = example["labels"]
        if "scores" in example.keys():
            scores = example["scores"]
        else:
            scores = torch.FloatTensor([1.0] * num_boxes)
        bboxes_example = []
        for i in range(num_boxes):
            coords = all_coords[i]
            x, y = coords[0].item(), coords[1].item()
            canonical_box = BBox2D(
                x=x,
                y=y,
                w=coords[2].item() - x,
                h=coords[3].item() - y,
                label=labels[i].item(),
                score=scores[i].item(),
            )
            bboxes_example.append(canonical_box)
        bboxes_batch.append(bboxes_example)
    return bboxes_batch
Beispiel #10
0
def list2canonical(box_list):
    """
    convert a list into a Bbox2d
    Args:
        box_list: box represented in list format

    Returns (BBox2d):

    """
    return BBox2D(
        label=box_list[0],
        score=box_list[1],
        x=box_list[2],
        y=box_list[3],
        w=box_list[4],
        h=box_list[5],
    )
Beispiel #11
0
def convert_coco2canonical(coco_annotation):
    """
    convert from a tuple of image and coco style dictionary describing the
    bboxes to a tuple of image, List of BBox2D
    Args:
        coco_annotation (tuple): image and coco style dictionary

    Returns: a tuple of image, List of BBox2D

    """
    image, targets = coco_annotation
    all_bboxes = []
    for t in targets:
        label = t["category_id"]
        bbox = t["bbox"]
        b = BBox2D(x=bbox[0], y=bbox[1], w=bbox[2], h=bbox[3], label=label)
        all_bboxes.append(b)
    return image, all_bboxes
Beispiel #12
0
def get_gt_pred_bbox():
    gt_bbox1 = BBox2D(label="car", x=1, y=1, w=2, h=3)
    gt_bbox2 = BBox2D(label="car", x=7, y=6, w=3, h=4)
    gt_bbox3 = BBox2D(label="car", x=2, y=6, w=2, h=4)

    pred_bbox1 = BBox2D(label="car", x=1, y=2, w=3, h=3, score=0.93)
    pred_bbox2 = BBox2D(label="car", x=6, y=5, w=3, h=4, score=0.94)
    pred_bbox3 = BBox2D(label="car", x=2, y=5, w=2, h=4, score=0.79)

    gt_bboxes = [gt_bbox1, gt_bbox2, gt_bbox3]

    pred_bboxes = [pred_bbox1, pred_bbox2, pred_bbox3]

    return gt_bboxes, pred_bboxes
Beispiel #13
0
def pad_box_lists(
    gt_preds: List[Tuple[List[BBox2D], List[BBox2D]]],
    max_boxes_per_img=MAX_BOXES_PER_IMAGE,
):
    """
    Pad the list of boxes and targets with place holder boxes so that all
    targets and predictions have the same number of elements
    Args:
        gt_preds (list(tuple(list(BBox2d), (Bbox2d)))): A list of tuples where
        the first element in each tuple is a list of bounding boxes
        corresponding to the targets in an example, and the second element
        in the tuple corresponds to the predictions in that example
        max_boxes_per_img: : maximum number of target boxes and predicted boxes
         per image

    Returns: same format as gt_preds but all examples will have the same
    number of targets and predictions. If there are fewer targets or
    predictions than max_boxes_per_img, then boxes with nan values are added.

    """
    padding_box = BBox2D(label=np.nan,
                         score=np.nan,
                         x=np.nan,
                         y=np.nan,
                         w=np.nan,
                         h=np.nan)
    for tup in gt_preds:
        target_list, pred_list = tup
        if len(target_list) > max_boxes_per_img:
            raise ValueError(f"max boxes per image set to {max_boxes_per_img},"
                             f" but there were {len(target_list)} targets"
                             f" found.")
        if len(pred_list) > max_boxes_per_img:
            raise ValueError(f"max boxes per image set to {max_boxes_per_img},"
                             f" but there were {len(target_list)} predictions"
                             f" found.")
        for i in range(max_boxes_per_img - len(target_list)):
            target_list.append(padding_box)
        for i in range(max_boxes_per_img - len(pred_list)):
            pred_list.append(padding_box)
    return gt_preds
def read_bounding_box_2d(annotation, label_mappings=None):
    """Convert dictionary representations of 2d bounding boxes into objects
    of the BBox2D class

    Args:
        annotation (List[dict]): 2D bounding box annotation
        label_mappings (dict): a dict of {label_id: label_name} mapping

    Returns:
        A list of 2D bounding box objects
    """
    bboxes = []
    for b in annotation:
        label_id = b["label_id"]
        x = b["x"]
        y = b["y"]
        w = b["width"]
        h = b["height"]
        if label_mappings and label_id not in label_mappings:
            continue
        box = BBox2D(label=label_id, x=x, y=y, w=w, h=h)
        bboxes.append(box)

    return bboxes
Beispiel #15
0
def get_gt_pred_bbox():
    gt_bbox1 = BBox2D(label="car", x=1, y=1, w=2, h=3)
    gt_bbox2 = BBox2D(label="car", x=7, y=6, w=3, h=4)
    gt_bbox11 = BBox2D(label="pedestrian", x=1, y=6, w=2, h=4)
    gt_bbox3 = BBox2D(label="car", x=2, y=2, w=2, h=2)
    gt_bbox4 = BBox2D(label="car", x=2, y=6, w=2, h=4)
    gt_bbox5 = BBox2D(label="car", x=6, y=5, w=4, h=3)
    gt_bbox14 = BBox2D(label="bike", x=6, y=1, w=3, h=2)
    gt_bbox6 = BBox2D(label="car", x=2, y=1, w=2, h=3)
    gt_bbox7 = BBox2D(label="car", x=6, y=3, w=3, h=5)
    gt_bbox8 = BBox2D(label="car", x=2, y=1, w=5, h=2)
    gt_bbox9 = BBox2D(label="car", x=2, y=4, w=3, h=4)
    gt_bbox10 = BBox2D(label="car", x=5, y=1, w=5, h=4)
    gt_bbox12 = BBox2D(label="pedestrian", x=1, y=5, w=3, h=4)
    gt_bbox13 = BBox2D(label="pedestrian", x=8, y=7, w=2, h=2)

    pred_bbox1 = BBox2D(label="car", x=1, y=2, w=3, h=3, score=0.93)
    pred_bbox2 = BBox2D(label="car", x=6, y=5, w=3, h=4, score=0.94)
    pred_bbox13 = BBox2D(label="pedestrian", x=1, y=6, w=2, h=3, score=0.70)
    pred_bbox16 = BBox2D(label="pedestrian", x=1, y=7, w=2, h=3, score=0.80)
    pred_bbox3 = BBox2D(label="car", x=2, y=5, w=2, h=4, score=0.79)
    pred_bbox4 = BBox2D(label="car", x=5, y=4, w=4, h=2, score=0.39)
    pred_bbox5 = BBox2D(label="car", x=5, y=7, w=4, h=2, score=0.49)
    pred_bbox6 = BBox2D(label="car", x=2, y=2, w=2, h=2, score=0.59)
    pred_bbox7 = BBox2D(label="car", x=2, y=6, w=2, h=2, score=0.69)
    pred_bbox8 = BBox2D(label="car", x=6, y=3, w=4, h=4, score=0.79)
    pred_bbox9 = BBox2D(label="car", x=1, y=1, w=7, h=2, score=0.99)
    pred_bbox10 = BBox2D(label="car", x=4, y=5, w=3, h=4, score=0.90)
    pred_bbox11 = BBox2D(label="car", x=1, y=1, w=2, h=3, score=0.80)
    pred_bbox12 = BBox2D(label="car", x=4, y=4, w=5, h=2, score=0.70)
    pred_bbox14 = BBox2D(label="pedestrian", x=3, y=7, w=3, h=3, score=0.40)
    pred_bbox15 = BBox2D(label="pedestrian", x=8, y=7, w=2, h=3, score=0.30)

    gt_bboxes = [
        [gt_bbox1, gt_bbox2, gt_bbox11],
        [gt_bbox3, gt_bbox4, gt_bbox5, gt_bbox14],
        [gt_bbox6, gt_bbox7],
        [gt_bbox8, gt_bbox9],
        [gt_bbox10, gt_bbox12, gt_bbox13],
    ]

    pred_bboxes = [
        [pred_bbox1, pred_bbox2, pred_bbox13, pred_bbox16],
        [pred_bbox3, pred_bbox4, pred_bbox5],
        [pred_bbox6, pred_bbox7, pred_bbox8],
        [pred_bbox9, pred_bbox10],
        [pred_bbox11, pred_bbox12, pred_bbox14, pred_bbox15],
    ]

    return gt_bboxes, pred_bboxes
Beispiel #16
0
def test_gt_preds2tensor():
    box_a, box_b = (
        BBox2D(label=0, x=10, y=10, w=10, h=10),
        BBox2D(label=1, x=20, y=20, w=10, h=10),
    )
    uneven_list = [
        ([box_a], []),
        ([box_a, box_b], [box_b]),
        ([box_b], [box_a, box_b]),
        ([box_b], [box_a]),
    ]
    actual_result = _gt_preds2tensor(uneven_list, 3)
    expected_result = torch.Tensor(
        [
            [
                [
                    [0.0, 1.0, 10.0, 10.0, 10.0, 10.0],
                    [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                    [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                ],
                [
                    [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                    [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                    [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                ],
            ],
            [
                [
                    [0.0, 1.0, 10.0, 10.0, 10.0, 10.0],
                    [1.0, 1.0, 20.0, 20.0, 10.0, 10.0],
                    [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                ],
                [
                    [1.0, 1.0, 20.0, 20.0, 10.0, 10.0],
                    [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                    [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                ],
            ],
            [
                [
                    [1.0, 1.0, 20.0, 20.0, 10.0, 10.0],
                    [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                    [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                ],
                [
                    [0.0, 1.0, 10.0, 10.0, 10.0, 10.0],
                    [1.0, 1.0, 20.0, 20.0, 10.0, 10.0],
                    [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                ],
            ],
            [
                [
                    [1.0, 1.0, 20.0, 20.0, 10.0, 10.0],
                    [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                    [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                ],
                [
                    [0.0, 1.0, 10.0, 10.0, 10.0, 10.0],
                    [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                    [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                ],
            ],
        ]
    )
    torch.eq(expected_result, actual_result)
Beispiel #17
0
import numpy as np
import torch

from datasetinsights.data.bbox import BBox2D
from datasetinsights.estimators.faster_rcnn import (
    _gt_preds2tensor,
    convert_bboxes2canonical,
    list3d_2canonical,
    pad_box_lists,
    prepare_bboxes,
)

padding_box = BBox2D(
    label=np.nan, score=np.nan, x=np.nan, y=np.nan, w=np.nan, h=np.nan
)


def test_pad_box_lists():
    box_a, box_b = (
        BBox2D(label=0, x=10, y=10, w=10, h=10),
        BBox2D(label=1, x=20, y=20, w=10, h=10),
    )
    uneven_list = [
        ([box_a], []),
        ([box_a, box_b], [box_b]),
        ([box_b], [box_a, box_b]),
        ([box_b], [box_a]),
    ]

    actual_result = pad_box_lists(uneven_list, max_boxes_per_img=3)
    expected_result = [
Beispiel #18
0
def test_list3d_2canonical():
    box_a, box_b = (
        BBox2D(label=0, x=10, y=10, w=10, h=10),
        BBox2D(label=1, x=20, y=20, w=10, h=10),
    )
    list3d = [
        [
            [
                [0.0, 1.0, 10.0, 10.0, 10.0, 10.0],
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
            ],
            [
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
            ],
        ],
        [
            [
                [0.0, 1.0, 10.0, 10.0, 10.0, 10.0],
                [1.0, 1.0, 20.0, 20.0, 10.0, 10.0],
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
            ],
            [
                [1.0, 1.0, 20.0, 20.0, 10.0, 10.0],
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
            ],
        ],
        [
            [
                [1.0, 1.0, 20.0, 20.0, 10.0, 10.0],
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
            ],
            [
                [0.0, 1.0, 10.0, 10.0, 10.0, 10.0],
                [1.0, 1.0, 20.0, 20.0, 10.0, 10.0],
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
            ],
        ],
        [
            [
                [1.0, 1.0, 20.0, 20.0, 10.0, 10.0],
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
            ],
            [
                [0.0, 1.0, 10.0, 10.0, 10.0, 10.0],
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
                [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
            ],
        ],
    ]
    expected_result = [
        ([box_a], []),
        ([box_a, box_b], [box_b]),
        ([box_b], [box_a, box_b]),
        ([box_b], [box_a]),
    ]
    actual_result = list3d_2canonical(list3d)
    assert actual_result == expected_result