Beispiel #1
0
def main(_):
    # load data
    meta, train_data, test_data = input_data.load_data(FLAGS.data_dir,
                                                       flatten=True)
    print('data loaded')
    print('train images: %s. test images: %s' %
          (train_data.images.shape[0], test_data.images.shape[0]))

    LABEL_SIZE = meta['label_size'] * meta["num_per_image"]
    IMAGE_SIZE = meta['width'] * meta['height']
    print('label_size: %s, image_size: %s' % (LABEL_SIZE, IMAGE_SIZE))

    # variable in the graph for input data
    x = tf.placeholder(tf.float32, [None, IMAGE_SIZE])
    y_ = tf.placeholder(tf.float32, [None, LABEL_SIZE])

    # define the model
    W = tf.Variable(tf.zeros([IMAGE_SIZE, LABEL_SIZE]))
    b = tf.Variable(tf.zeros([LABEL_SIZE]))
    y = tf.matmul(x, W) + b

    # Define loss and optimizer
    diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
    cross_entropy = tf.reduce_mean(diff)
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

    # forword prop
    predict = tf.argmax(y, axis=1)
    expect = tf.argmax(y_, axis=1)

    # evaluate accuracy
    correct_prediction = tf.equal(predict, expect)
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    with tf.Session() as sess:
        tf.global_variables_initializer().run()

        # Train
        for i in range(MAX_STEPS):
            batch_xs, batch_ys = train_data.next_batch(BATCH_SIZE)
            sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

            if i % 100 == 0:
                # Test trained model
                r = sess.run(accuracy,
                             feed_dict={
                                 x: test_data.images,
                                 y_: test_data.labels
                             })
                print('step = %s, accuracy = %.2f%%' % (i, r * 100))

        # final check after looping
        r_test = sess.run(accuracy,
                          feed_dict={
                              x: test_data.images,
                              y_: test_data.labels
                          })
        print('testing accuracy = %.2f%%' % (r_test * 100, ))
        saver = tf.train.Saver()
        save_path = saver.save(sess, "./model.ckpt")
Beispiel #2
0
def main(_):
    # load data
    meta, train_data, test_data = input_data.load_data(FLAGS.data_dir, flatten=False)
    print('data loaded')
    print('train images: %s. test images: %s' % (train_data.images.shape[0], test_data.images.shape[0]))

    LABEL_SIZE = meta['label_size']
    IMAGE_HEIGHT = meta['height']
    IMAGE_WIDTH = meta['width']
    IMAGE_SIZE = IMAGE_WIDTH * IMAGE_HEIGHT
    print('label_size: %s, image_size: %s' % (LABEL_SIZE, IMAGE_SIZE))

    # variable in the graph for input data
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT, IMAGE_WIDTH])
        y_ = tf.placeholder(tf.float32, [None, LABEL_SIZE])

        # must be 4-D with shape `[batch_size, height, width, channels]`
        x_image = tf.reshape(x, [-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
        tf.summary.image('input', x_image, max_outputs=LABEL_SIZE)

    # define the model
    with tf.name_scope('convolution-layer-1'):
        W_conv1 = weight_variable([5, 5, 1, 32])
        b_conv1 = bias_variable([32])

        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
        h_pool1 = max_pool_2x2(h_conv1)

    with tf.name_scope('convolution-layer-2'):
        W_conv2 = weight_variable([5, 5, 32, 64])
        b_conv2 = bias_variable([64])

        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
        h_pool2 = max_pool_2x2(h_conv2)

    with tf.name_scope('densely-connected'):
        W_fc1 = weight_variable([IMAGE_WIDTH * IMAGE_HEIGHT * 4, 1024])
        b_fc1 = bias_variable([1024])

        h_pool2_flat = tf.reshape(h_pool2, [-1, IMAGE_WIDTH*IMAGE_HEIGHT*4])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

    with tf.name_scope('dropout'):
        # To reduce overfitting, we will apply dropout before the readout layer
        keep_prob = tf.placeholder(tf.float32)
        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    with tf.name_scope('readout'):
        W_fc2 = weight_variable([1024, LABEL_SIZE])
        b_fc2 = bias_variable([LABEL_SIZE])

        y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

    # Define loss and optimizer
    # Returns:
    # A 1-D `Tensor` of length `batch_size`
    # of the same type as `logits` with the softmax cross entropy loss.
    with tf.name_scope('loss'):
        cross_entropy = tf.reduce_mean(
            # -tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
            tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
        variable_summaries(cross_entropy)

    # forword prop
    with tf.name_scope('forword-prop'):
        predict = tf.argmax(y_conv, axis=1)
        expect = tf.argmax(y_, axis=1)

    # evaluate accuracy
    with tf.name_scope('evaluate_accuracy'):
        correct_prediction = tf.equal(predict, expect)
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        variable_summaries(accuracy)

    with tf.Session(config=config) as sess:

        merged = tf.summary.merge_all()
        train_writer = tf.summary.FileWriter(LOG_DIR + '/train', sess.graph)
        test_writer = tf.summary.FileWriter(LOG_DIR + '/test', sess.graph)

        tf.global_variables_initializer().run()

        # Train
        for i in range(MAX_STEPS):
            batch_xs, batch_ys = train_data.next_batch(BATCH_SIZE)

            step_summary, _ = sess.run([merged, train_step], feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 1.0})
            train_writer.add_summary(step_summary, i)

            if i % 100 == 0:
                # Test trained model
                valid_summary, train_accuracy = sess.run([merged, accuracy], feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 1.0})
                train_writer.add_summary(valid_summary, i)

                # final check after looping
                test_x, test_y = test_data.next_batch(2000)
                test_summary, test_accuracy = sess.run([merged, accuracy], feed_dict={x: test_x, y_: test_y, keep_prob: 1.0})
                test_writer.add_summary(test_summary, i)

                print('step %s, training accuracy = %.2f%%, testing accuracy = %.2f%%' % (i, train_accuracy * 100, test_accuracy * 100))
        saver = tf.train.Saver()
        saver.save(sess, "model/1char/model.ckpt")
        train_writer.close()
        test_writer.close()

        # final check after looping
        test_x, test_y = test_data.next_batch(2000)
        test_accuracy = accuracy.eval(feed_dict={x: test_x, y_: test_y, keep_prob: 1.0})
        print('testing accuracy = %.2f%%' % (test_accuracy * 100, ))
def main(_):
    # load data
    print('开始')
    meta, train_data, test_data = input_data.load_data(c_dir + '/' +
                                                       FLAGS.data_dir,
                                                       flatten=False)
    print('data loaded')
    print('train images: %s. test images: %s' %
          (train_data.images.shape[0], test_data.images.shape[0]))

    LABEL_SIZE = meta['label_size']
    NUM_PER_IMAGE = meta['num_per_image']
    IMAGE_HEIGHT = meta['height']
    IMAGE_WIDTH = meta['width']
    IMAGE_SIZE = IMAGE_WIDTH * IMAGE_HEIGHT
    print('label_size: %s, image_size: %s' % (LABEL_SIZE, IMAGE_SIZE))

    # variable in the graph for input data
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT, IMAGE_WIDTH])
        y_ = tf.placeholder(tf.float32, [None, NUM_PER_IMAGE * LABEL_SIZE])

        # must be 4-D with shape `[batch_size, height, width, channels]`
        x_image = tf.reshape(x, [-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
        tf.summary.image('input', x_image, max_outputs=LABEL_SIZE)

    # define the model
    with tf.name_scope('convolution-layer-1'):
        W_conv1 = weight_variable([5, 5, 1, 32])
        b_conv1 = bias_variable([32])

        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
        h_pool1 = max_pool_2x2(h_conv1)

    with tf.name_scope('convolution-layer-2'):
        W_conv2 = weight_variable([5, 5, 32, 64])
        b_conv2 = bias_variable([64])

        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
        h_pool2 = max_pool_2x2(h_conv2)

    with tf.name_scope('densely-connected'):
        W_fc1 = weight_variable([IMAGE_WIDTH * IMAGE_HEIGHT * 4, 1024])
        b_fc1 = bias_variable([1024])

        h_pool2_flat = tf.reshape(h_pool2,
                                  [-1, IMAGE_WIDTH * IMAGE_HEIGHT * 4])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

    with tf.name_scope('dropout'):
        # To reduce overfitting, we will apply dropout before the readout layer
        keep_prob = tf.placeholder(tf.float32)
        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    with tf.name_scope('readout'):
        W_fc2 = weight_variable([1024, LABEL_SIZE])
        b_fc2 = bias_variable([LABEL_SIZE])

        y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

    # Define loss and optimizer
    # Returns:
    # A 1-D `Tensor` of length `batch_size`
    # of the same type as `logits` with the softmax cross entropy loss.

    # forword prop
    with tf.name_scope('forword-prop'):
        predict = tf.argmax(y_conv, axis=1)
        expect = tf.argmax(y_, axis=1)

        # evaluate accuracy
    with tf.name_scope('evaluate_accuracy'):
        correct_prediction = tf.equal(predict, expect)
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        variable_summaries(accuracy)

    fixed_adv_sample_get_op = stepll_adversarial_images(x, y_conv)

    with tf.Session() as sess:

        restore(sess)

        # 初始化 tf.global_variables_initializer().run()

        # Test
        test_x, test_y = train_data.next_batch(1)
        _predict = predict.eval(feed_dict={
            x: test_x,
            y_: test_y,
            keep_prob: 1.0
        })
        _expect = expect.eval(feed_dict={
            x: test_x,
            y_: test_y,
            keep_prob: 1.0
        })
        _adv = fixed_adv_sample_get_op.eval(feed_dict={
            x: test_x,
            y_: test_y,
            keep_prob: 1.0
        })
        print(_adv.shape)
        _adv_predict = predict.eval(feed_dict={
            x: _adv,
            y_: test_y,
            keep_prob: 1.0
        })
        plt.subplot(1, 2, 1)
        plt.imshow(test_x[0])
        plt.subplot(1, 2, 2)
        plt.imshow(_adv[0])
        plt.show()
        print(
            _predict,
            _expect,
            _adv_predict,
        )
def main(_):
    # load data
    meta, train_data, test_data = input_data.load_data(FLAGS.data_dir,
                                                       flatten=False)
    print('data loaded')
    print('train images: %s. test images: %s' %
          (train_data.images.shape[0], test_data.images.shape[0]))

    LABEL_SIZE = meta['label_size']
    IMAGE_HEIGHT = meta['height']
    IMAGE_WIDTH = meta['width']

    # LABEL_SIZE = 62
    # IMAGE_HEIGHT = 40
    # IMAGE_WIDTH = 40
    IMAGE_SIZE = IMAGE_WIDTH * IMAGE_HEIGHT
    print('label_size: %s, image_size: %s' % (LABEL_SIZE, IMAGE_SIZE))

    # variable in the graph for input data
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT, IMAGE_WIDTH])
        y_ = tf.placeholder(tf.float32, [None, LABEL_SIZE])

        # must be 4-D with shape `[TRAIN_BATCH_SIZE, height, width, channels]`
        x_image = tf.reshape(x, [-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
        tf.summary.image('input', x_image, max_outputs=LABEL_SIZE)

    # define the model
    with tf.name_scope('convolution-layer-1'):
        W_conv1 = weight_variable([5, 5, 1, 32])
        b_conv1 = bias_variable([32])

        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
        h_pool1 = max_pool_2x2(h_conv1)

    with tf.name_scope('convolution-layer-2'):
        W_conv2 = weight_variable([3, 3, 32, 64])
        b_conv2 = bias_variable([64])

        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
        h_pool2 = max_pool_2x2(h_conv2)

    with tf.name_scope('convolution-layer-3'):
        W_conv3 = weight_variable([3, 3, 64, 128])
        b_conv3 = bias_variable([128])

        h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3)
        h_pool3 = max_pool_2x2(h_conv3)

    with tf.name_scope('convolution-layer-4'):
        W_conv4 = weight_variable([3, 3, 128, 256])
        b_conv4 = bias_variable([256])

        h_conv4 = tf.nn.relu(conv2d(h_pool3, W_conv4) + b_conv4)
        # h_pool4 = max_pool_2x2(h_conv4)
        h_pool4 = tf.nn.max_pool(h_conv4,
                                 ksize=[1, 5, 5, 1],
                                 strides=[1, 1, 1, 1],
                                 padding='VALID')

    with tf.name_scope('readout'):
        W_fc2 = weight_variable([256, LABEL_SIZE])
        b_fc2 = bias_variable([LABEL_SIZE])

        # pre_fc = tf.reshape(h_pool5, [-1, 512])
        # h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

        pre_fc = tf.reshape(h_pool4, [-1, 256])
        y_conv = tf.matmul(pre_fc, W_fc2) + b_fc2

    # with tf.name_scope('convolution-layer-5'):
    # W_conv5 = weight_variable([3, 3, 256, 512])
    # b_conv5 = bias_variable([512])

    # h_conv5 = tf.nn.relu(conv2d(h_pool4, W_conv5) + b_conv5)
    # h_pool5 = max_pool_2x2(h_conv5)
    # h_pool5 = tf.nn.max_pool(h_conv5, ksize=[1, 2, 2, 1],
    #                          strides=[1, 2, 2, 1], padding='SAME')

    # with tf.name_scope('densely-connected'):
    #     W_fc1 = weight_variable([IMAGE_WIDTH * IMAGE_HEIGHT * 4, 1024])
    #     b_fc1 = bias_variable([1024])

    #     h_pool2_flat = tf.reshape(
    #         h_pool2, [-1, IMAGE_WIDTH * IMAGE_HEIGHT * 4])
    #     h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

    # with tf.name_scope('dropout'):
    #     # To reduce overfitting, we will apply dropout before the readout layer
    #     keep_prob = tf.placeholder(tf.float32)
    #     h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    # with tf.name_scope('readout'):
    #     W_fc2 = weight_variable([512, LABEL_SIZE])
    #     b_fc2 = bias_variable([LABEL_SIZE])

    #     pre_fc = tf.reshape(h_pool5, [-1, 512])

    #     y_conv = tf.matmul(pre_fc, W_fc2) + b_fc2

    # Define loss and optimizer
    # Returns:
    # A 1-D `Tensor` of length `TRAIN_BATCH_SIZE`
    # of the same type as `logits` with the softmax cross entropy loss.
    with tf.name_scope('loss'):
        cross_entropy = tf.reduce_mean(
            # -tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
            tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
        variable_summaries(cross_entropy)

    # forword prop
    with tf.name_scope('forword-prop'):
        predict = tf.argmax(y_conv, axis=1)
        expect = tf.argmax(y_, axis=1)

    # evaluate accuracy
    with tf.name_scope('evaluate_accuracy'):
        correct_prediction = tf.equal(predict, expect)
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        variable_summaries(accuracy)

    with tf.Session() as sess:

        merged = tf.summary.merge_all()
        train_writer = tf.summary.FileWriter(LOG_DIR + '/train', sess.graph)
        test_writer = tf.summary.FileWriter(LOG_DIR + '/test', sess.graph)

        tf.global_variables_initializer().run()

        # Train
        for i in range(MAX_STEPS):
            batch_xs, batch_ys = train_data.next_batch(TRAIN_BATCH_SIZE)

            step_summary, _ = sess.run([merged, train_step],
                                       feed_dict={
                                           x: batch_xs,
                                           y_: batch_ys
                                       })
            train_writer.add_summary(step_summary, i)

            if i % 100 == 0:
                # Test trained model
                valid_summary, train_accuracy = sess.run([merged, accuracy],
                                                         feed_dict={
                                                             x: batch_xs,
                                                             y_: batch_ys
                                                         })
                train_writer.add_summary(valid_summary, i)

                # final check after looping
                sum_test_acc = 0
                for j in range(TEST_STEPS):
                    test_x, test_y = test_data.next_batch(TEST_BATCH_SIZE)
                    test_summary, test_accuracy = sess.run([merged, accuracy],
                                                           feed_dict={
                                                               x: test_x,
                                                               y_: test_y
                                                           })
                    test_writer.add_summary(test_summary, i)
                    sum_test_acc += test_accuracy

                sum_test_acc /= TEST_STEPS

                print(
                    'step %s, training accuracy = %.2f%%, testing accuracy = %.2f%%'
                    % (i, train_accuracy * 100, sum_test_acc * 100))

        train_writer.close()
        test_writer.close()

        # saver = tf.train.Saver()
        # # saver.save(sess, osp.join(LOG_DIR, './models-5-layers-zyf'))
        # saver.save(sess, osp.join(LOG_DIR, './models-4-layers-zyf'))

        # final check after looping
        sum_test_acc = 0
        for j in range(TEST_STEPS):
            test_x, test_y = test_data.next_batch(TEST_BATCH_SIZE)
            test_accuracy = accuracy.eval(feed_dict={x: test_x, y_: test_y})
            sum_test_acc += test_accuracy

        sum_test_acc /= TEST_STEPS
        print('testing accuracy = %.2f%%' % (sum_test_acc * 100, ))

        if i >= MAX_STEPS * 0.9 or sum_test_acc >= 0.95:
            saver = tf.train.Saver()
            # saver.save(sess, osp.join(LOG_DIR, './models-5-layers-zyf'))
            saver.save(sess,
                       osp.join(LOG_DIR, './models-7-layers-zyf'),
                       global_step=i)
Beispiel #5
0
def main(_):
    # load data
    meta, train_data, test_data = input_data.load_data(FLAGS.data_dir,
                                                       flatten=True)
    print('data loaded. train images: %s. test images: %s' %
          (train_data.images.shape[0], test_data.images.shape[0]))

    LABEL_SIZE = meta['label_size']
    IMAGE_WIDTH = meta['width']
    IMAGE_HEIGHT = meta['height']
    IMAGE_SIZE = IMAGE_WIDTH * IMAGE_HEIGHT
    print('label_size: %s, image_size: %s' % (LABEL_SIZE, IMAGE_SIZE))

    # variable in the graph for input data
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, IMAGE_SIZE])
        y_ = tf.placeholder(tf.float32, [None, LABEL_SIZE])
        variable_summaries(x)
        variable_summaries(y_)

        # must be 4-D with shape `[batch_size, height, width, channels]`
        images_shaped_input = tf.reshape(x, [-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
        tf.summary.image('input',
                         images_shaped_input,
                         max_outputs=LABEL_SIZE * 2)

    # define the model
    # Adding a name scope ensures logical grouping of the layers in the graph.
    with tf.name_scope('linear_model'):
        with tf.name_scope('W'):
            W = tf.Variable(tf.zeros([IMAGE_SIZE, LABEL_SIZE]))
            variable_summaries(W)
        with tf.name_scope('b'):
            b = tf.Variable(tf.zeros([LABEL_SIZE]))
            variable_summaries(b)
        with tf.name_scope('y'):
            y = tf.matmul(x, W) + b
            tf.summary.histogram('y', y)

    # Define loss and optimizer
    # Returns:
    # A 1-D `Tensor` of length `batch_size`
    # of the same type as `logits` with the softmax cross entropy loss.
    with tf.name_scope('loss'):
        diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
        cross_entropy = tf.reduce_mean(diff)
        train_step = tf.train.GradientDescentOptimizer(0.5).minimize(
            cross_entropy)
        variable_summaries(diff)

    # forword prop
    predict = tf.argmax(y, axis=1)
    expect = tf.argmax(y_, axis=1)

    # evaluate accuracy
    with tf.name_scope('evaluate_accuracy'):
        correct_prediction = tf.equal(predict, expect)
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        variable_summaries(accuracy)

    with tf.Session() as sess:

        merged = tf.summary.merge_all()
        train_writer = tf.summary.FileWriter(LOG_DIR + '/train', sess.graph)

        tf.global_variables_initializer().run()

        # Train
        for i in range(MAX_STEPS):
            batch_xs, batch_ys = train_data.next_batch(BATCH_SIZE)
            train_summary, _ = sess.run([merged, train_step],
                                        feed_dict={
                                            x: batch_xs,
                                            y_: batch_ys
                                        })
            train_writer.add_summary(train_summary, i)

            if i % 100 == 0:
                # Test trained model
                test_summary, r = sess.run([merged, accuracy],
                                           feed_dict={
                                               x: test_data.images,
                                               y_: test_data.labels
                                           })
                train_writer.add_summary(test_summary, i)
                print('step = %s, accuracy = %.2f%%' % (i, r * 100))

        train_writer.close()

        # final check after looping
        test_summary, r_test = sess.run([merged, accuracy],
                                        feed_dict={
                                            x: test_data.images,
                                            y_: test_data.labels
                                        })
        train_writer.add_summary(test_summary, i)
        print('testing accuracy = %.2f%%' % (r_test * 100, ))