Beispiel #1
0
    def eval_input_fn():
        eval_files_copy = list(eval_files)
        shuffle(eval_files_copy)

        eval_files_copy = tf.data.TFRecordDataset(eval_files_copy)

        dataset = DatasetSource(eval_files_copy, hparams)
        dataset = dataset.make_source_and_target().filter_by_max_output_length(
        ).repeat().group_by_batch(batch_size=1)
        return dataset.dataset
    def eval_input_fn():
        source_and_target_files = list(
            zip(eval_source_files, eval_target_files))
        shuffle(source_and_target_files)
        source = tf.data.TFRecordDataset(
            [s for s, _ in source_and_target_files])
        target = tf.data.TFRecordDataset(
            [t for _, t in source_and_target_files])

        dataset = DatasetSource(source, target, hparams)
        dataset = dataset.prepare_and_zip().filter_by_max_output_length(
        ).repeat().group_by_batch(batch_size=1)
        return dataset.dataset
Beispiel #3
0
 def train_input_fn():
     train_files_copy = list(train_files)
     shuffle(train_files_copy)
     dataset = DatasetSource.create_from_tfrecord_files(
         train_files_copy,
         hparams,
         cycle_length=interleave_parallelism,
         buffer_output_elements=hparams.interleave_buffer_output_elements,
         prefetch_input_elements=hparams.interleave_prefetch_input_elements)
     batched = dataset.make_source_and_target().filter_by_max_output_length(
     ).shuffle_and_repeat(
         hparams.suffle_buffer_size).group_by_batch().prefetch(
             hparams.prefetch_buffer_size)
     return batched.dataset
    def train_input_fn():
        source_and_target_files = list(
            zip(train_source_files, train_target_files))
        shuffle(source_and_target_files)
        source = (s for s, _ in source_and_target_files)
        target = (t for _, t in source_and_target_files)

        dataset = DatasetSource.create_from_tfrecord_files(
            source,
            target,
            hparams,
            cycle_length=interleave_parallelism,
            buffer_output_elements=hparams.interleave_buffer_output_elements,
            prefetch_input_elements=hparams.interleave_prefetch_input_elements)
        batched = dataset.prepare_and_zip().filter_by_max_output_length(
        ).repeat(count=None).shuffle(
            hparams.suffle_buffer_size).group_by_batch().prefetch(
                hparams.prefetch_buffer_size)
        return batched.dataset
 def predict_input_fn():
     source = tf.data.TFRecordDataset(list(test_source_files))
     target = tf.data.TFRecordDataset(list(test_target_files))
     dataset = DatasetSource(source, target, hparams)
     batched = dataset.prepare_and_zip().filter_by_max_output_length().group_by_batch(batch_size=1)
     return batched.dataset
Beispiel #6
0
 def predict_input_fn():
     records = tf.data.TFRecordDataset(list(test_files))
     dataset = DatasetSource(records, hparams)
     batched = dataset.make_source_and_target().group_by_batch(
         batch_size=1).arrange_for_prediction()
     return batched.dataset