def __init__(self, data_dir, transformation, device, num_bin):

        args.data_dir = data_dir
        args.filename_list = data_dir
        args.dataset = 'AFLW2000'
        self.transformations = transformation
        self.device = device
        self.num_bin = num_bin

        idx_tensor = [idx for idx in xrange(67)]
        self.idx_tensor = torch.FloatTensor(idx_tensor).to(self.device)
        if args.dataset == 'Pose_300W_LP':
            pose_dataset = datasets.Pose_300W_LP(args.data_dir,
                                                 args.filename_list,
                                                 self.transformations)
        elif args.dataset == 'Pose_300W_LP_random_ds':
            pose_dataset = datasets.Pose_300W_LP_random_ds(
                args.data_dir, args.filename_list, self.transformations)
        elif args.dataset == 'AFLW2000':
            pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
                                             self.transformations)
        elif args.dataset == 'AFLW2000_ds':
            pose_dataset = datasets.AFLW2000_ds(args.data_dir,
                                                args.filename_list,
                                                self.transformations)
        elif args.dataset == 'BIWI':
            pose_dataset = datasets.BIWI(args.data_dir, args.filename_list,
                                         self.transformations)
        elif args.dataset == 'AFLW':
            pose_dataset = datasets.AFLW(args.data_dir, args.filename_list,
                                         self.transformations)
        elif args.dataset == 'AFLW_aug':
            pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list,
                                             self.transformations)
        elif args.dataset == 'AFW':
            pose_dataset = datasets.AFW(args.data_dir, args.filename_list,
                                        self.transformations)
        else:
            print 'Error: not a valid dataset name'
            sys.exit()

        self.test_loader = torch.utils.data.DataLoader(
            dataset=pose_dataset, batch_size=args.batch_size, num_workers=2)
        transforms.Scale(224),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])  # rgb模式

    if args.dataset == 'Pose_300W_LP':
        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list,
                                             transformations)
    elif args.dataset == 'Pose_300W_LP_random_ds':
        pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir,
                                                       args.filename_list,
                                                       transformations)
    elif args.dataset == 'AFLW2000':
        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
                                         transformations)
    elif args.dataset == 'AFLW2000_ds':
        pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list,
                                            transformations)
    elif args.dataset == 'BIWI':
        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list,
                                     transformations)
    elif args.dataset == 'AFLW':
        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list,
                                     transformations)
    elif args.dataset == 'AFLW_aug':
        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list,
                                         transformations)
    elif args.dataset == 'AFW':
        pose_dataset = datasets.AFW(args.data_dir, args.filename_list,
                                    transformations)
Beispiel #3
0
        load_filtered_state_dict(model, saved_state_dict)

    print 'Loading data.'

    transformations = transforms.Compose([transforms.Scale(240),
    transforms.RandomCrop(224), transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])

    if args.dataset == 'Pose_300W_LP':
        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations, bin_width_degrees)
    elif args.dataset == 'Pose_300W_LP_random_ds':
        pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations, bin_width_degrees)
    elif args.dataset == 'Synhead':
        pose_dataset = datasets.Synhead(args.data_dir, args.filename_list, transformations, bin_width_degrees)
    elif args.dataset == 'AFLW2000':
        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations, bin_width_degrees)
    elif args.dataset == 'BIWI':
        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations, bin_width_degrees)
    elif args.dataset == 'AFLW':
        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations, bin_width_degrees)
    elif args.dataset == 'AFLW_aug':
        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations, bin_width_degrees)
    elif args.dataset == 'AFW':
        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations, bin_width_degrees)
    else:
        print 'Error: not a valid dataset name'
        sys.exit()

    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
Beispiel #4
0
def test():
    args = parse_args()
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    mae_yaw = 0
    mae_pitch = 0
    mae_roll = 0

    images = tf.placeholder(dtype=tf.float32,
                            shape=[None, 224, 224, 3],
                            name='image_batch')
    is_training = tf.placeholder(tf.bool)
    num_bins = 66
    keep_prob = 0

    with slim.arg_scope(nets.resnet_v1.resnet_arg_scope):
        net, endpoints = nets.resnet_v1.resnet_v1_50(images,
                                                     num_classes=None,
                                                     is_training=is_training)

    with tf.variable_scope('Logits'):
        net = tf.squeeze(net, axis=[1, 2])
        net = slim.dropout(net, keep_prob, scope='scope')
        yaw = slim.fully_connected(net,
                                   num_outputs=num_bins,
                                   activation_fn=None,
                                   scope='fc_yaw')
        pitch = slim.fully_connected(net,
                                     num_outputs=num_bins,
                                     activation_fn=None,
                                     scope='fc_pitch')
        roll = slim.fully_connected(net,
                                    num_outputs=num_bins,
                                    activation_fn=None,
                                    scope='fc_roll')

    yaw_predicted = tf.nn.softmax(yaw)
    pitch_predicted = tf.nn.softmax(pitch)
    roll_predicted = tf.nn.softmax(roll)

    idx_tensor = [idx for idx in range(66)]
    idx_tensor = tf.convert_to_tensor(idx_tensor, tf.float32)

    yaw_predicted = tf.reduce_sum(yaw_predicted * idx_tensor, 1) * 3 - 99
    pitch_predicted = tf.reduce_sum(pitch_predicted * idx_tensor, 1) * 3 - 99
    roll_predicted = tf.reduce_sum(roll_predicted * idx_tensor, 1) * 3 - 99

    config = tf.ConfigProto(log_device_placement=False,
                            allow_soft_placement=True)
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        saver = tf.train.Saver()
        ckpt = tf.train.latest_checkpoint(args.checkpoint_dir)
        saver.restore(sess, ckpt)

        test_data = datasets.AFLW2000()
        for i in range(test_data.length):
            img = test_data[i][0]
            img = img.resize((224, 224), Image.BILINEAR)
            precesssed_img = datasets.nomalizing(img, [0.485, 0.456, 0.406],
                                                 [0.229, 0.224, 0.225])
            b_img = tf.expand_dims(precesssed_img, 0)
            b_img = b_img.eval()

            feed_dict = {images: b_img, is_training: False}
            pre_yaw, pre_pitch, pre_roll = sess.run(
                [yaw_predicted, pitch_predicted, roll_predicted],
                feed_dict=feed_dict)

            cont_labels = test_data[i][2]
            yaw_label = cont_labels[0]
            pitch_label = cont_labels[1]
            roll_label = cont_labels[2]

            mae_yaw = mae_yaw + abs(pre_yaw - yaw_label)
            mae_pitch = mae_pitch + abs(pre_pitch - pitch_label)
            mae_roll = mae_roll + abs(pre_roll - roll_label)

        mean_yaw = mae_yaw / test_data.length
        mean_pitch = mae_pitch / test_data.length
        mean_roll = mae_roll / test_data.length

    return mean_yaw, mean_pitch, mean_roll
Beispiel #5
0
    if args.dataset == 'Pose_300W_LP':
        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list,
                                             transformations)

    elif args.dataset == 'Pose_300W_LP_random_ds':
        pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir,
                                                       args.filename_list,
                                                       transformations)

    elif args.dataset == 'Synhead':
        pose_dataset = datasets.Synhead(args.data_dir, args.filename_list,
                                        transformations)

    elif args.dataset == 'AFLW2000':
        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
                                         transformations)

    elif args.dataset == 'BIWI':
        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list,
                                     transformations)

    elif args.dataset == 'AFLW':
        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list,
                                     transformations)

    elif args.dataset == 'AFLW_aug':
        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list,
                                         transformations)

    elif args.dataset == 'AFW':
        pose_dataset = datasets.AFW(args.data_dir, args.filename_list,
Beispiel #6
0
    transforms.CenterCrop(224), transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])

    data_dir = os.path.join('Data\\RAW', args.data_dir)
    vdata_dir = os.path.join('Data\\RAW', args.vdata_dir)

    if args.dataset == 'Pose_300W_Training':
        pose_dataset = datasets.Pose_300W_Training(data_dir, args.filename_list, transformations, max_angle=max_angle, bin_angle=angles_per_bin)
    elif args.dataset == 'Pose_300W_PNP_Training':
        pose_dataset = datasets.Pose_300W_PNP_Training(data_dir, args.filename_list, transformations, max_angle=max_angle, bin_angle=angles_per_bin)
    else:
        print('Error: not a valid dataset name')
        sys.exit()

    if args.vdataset == 'AFLW2000':
        validate_pose_dataset = datasets.AFLW2000(vdata_dir, args.vfilename_list, vtransformations)
    else:
        print('Error: not a valid validation dataset name')
        sys.exit()

    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=2)

    validation_loader = torch.utils.data.DataLoader(dataset=validate_pose_dataset,
                                                    batch_size=1,
                                                    num_workers=2)

    model.cuda(gpu)
    criterion = nn.CrossEntropyLoss().cuda(gpu)
    if args.dataset == 'Pose_300W_LP':
        train_filename_list = os.path.join(args.filename_list,
                                           'train_filename_all.npy')
        val_filename_list = os.path.join(args.filename_list,
                                         'val_filename_all.npy')
        pose_dataset_train = datasets.Pose_300W_LP(args.data_dir, num_bins,
                                                   train_filename_list,
                                                   transformations, args.debug)
        pose_dataset_val = datasets.Pose_300W_LP(args.data_dir, num_bins,
                                                 val_filename_list,
                                                 transformations, args.debug)
    elif args.dataset == 'AFLW2000':
        test_filename_list = os.path.join(args.filename_list,
                                          'test_filename.npy')
        pose_dataset = datasets.AFLW2000(args.data_dir, num_bins,
                                         args.filename_list, transformations)
    else:
        print('Error: not a valid dataset name')
        sys.exit()

    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset_train,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=4)
    val_loader = torch.utils.data.DataLoader(dataset=pose_dataset_val,
                                             batch_size=batch_size,
                                             shuffle=True,
                                             num_workers=4)

    ## Handling Class Imbalance
    yaw_l = []
Beispiel #8
0
yaw = Dense(units=BIN_NUM, name='yaw')(feature)
pitch = Dense(units=BIN_NUM, name='pitch')(feature)
roll = Dense(units=BIN_NUM, name='roll')(feature)

model = Model(inputs=inputs, outputs=[yaw, pitch, roll])

model.compile(optimizer='adam',
              loss={
                  'yaw': loss_angle,
                  'pitch': loss_angle,
                  'roll': loss_angle,
              })

# model.load_weights(BIWI_PRETRAINED)

aflw2000 = datasets.AFLW2000(AFLW2000_DATA_DIR,
                             '/filename_list.txt',
                             batch_size=BATCH_SIZE,
                             input_size=INPUT_SIZE)

model.summary()

model.fit(x=aflw2000.data_generator(),
          epochs=EPOCHS,
          steps_per_epoch=aflw2000.train_num // BATCH_SIZE,
          max_queue_size=10,
          workers=1,
          verbose=1)

model.save(MODELS_DIR + "hopenet2.h5")