Beispiel #1
0
    def check_model(self, model):
        raw_datasets = DatasetDict()
        raw_datasets["eval"] = load_dataset("superb", "ks", split="validation")
        raw_datasets = raw_datasets.cast_column(
            "audio", datasets.features.Audio(sampling_rate=16000))

        sample = raw_datasets["eval"][0]
        out = model(sample["audio"]["array"].reshape(1, 16000))

        self.assertEqual(np.argmax(out.logits), 11)
Beispiel #2
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} "
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to train from scratch.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Initialize our dataset and prepare it for the audio classification task.
    raw_datasets = DatasetDict()
    raw_datasets["train"] = load_dataset(data_args.dataset_name,
                                         data_args.dataset_config_name,
                                         split=data_args.train_split_name)
    raw_datasets["eval"] = load_dataset(data_args.dataset_name,
                                        data_args.dataset_config_name,
                                        split=data_args.eval_split_name)

    if data_args.audio_column_name not in raw_datasets["train"].column_names:
        raise ValueError(
            f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--audio_column_name` to the correct audio column - one of "
            f"{', '.join(raw_datasets['train'].column_names)}.")

    if data_args.label_column_name not in raw_datasets["train"].column_names:
        raise ValueError(
            f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--label_column_name` to the correct text column - one of "
            f"{', '.join(raw_datasets['train'].column_names)}.")

    # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
    # transformer outputs in the classifier, but it doesn't always lead to better accuracy
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name or model_args.model_name_or_path,
        return_attention_mask=model_args.attention_mask,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # `datasets` takes care of automatically loading and resampling the audio,
    # so we just need to set the correct target sampling rate.
    raw_datasets = raw_datasets.cast_column(
        data_args.audio_column_name,
        datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate))

    def train_transforms(batch):
        """Apply train_transforms across a batch."""
        output_batch = {"input_values": []}
        for audio in batch[data_args.audio_column_name]:
            wav = random_subsample(audio["array"],
                                   max_length=data_args.max_length_seconds,
                                   sample_rate=feature_extractor.sampling_rate)
            output_batch["input_values"].append(wav)
        output_batch["labels"] = [
            label for label in batch[data_args.label_column_name]
        ]

        return output_batch

    def val_transforms(batch):
        """Apply val_transforms across a batch."""
        output_batch = {"input_values": []}
        for audio in batch[data_args.audio_column_name]:
            wav = audio["array"]
            output_batch["input_values"].append(wav)
        output_batch["labels"] = [
            label for label in batch[data_args.label_column_name]
        ]

        return output_batch

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
    labels = raw_datasets["train"].features[data_args.label_column_name].names
    label2id, id2label = dict(), dict()
    for i, label in enumerate(labels):
        label2id[label] = str(i)
        id2label[str(i)] = label

    # Load the accuracy metric from the datasets package
    metric = datasets.load_metric("accuracy")

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
    # `predictions` and `label_ids` fields) and has to return a dictionary string to float.
    def compute_metrics(eval_pred):
        """Computes accuracy on a batch of predictions"""
        predictions = np.argmax(eval_pred.predictions, axis=1)
        return metric.compute(predictions=predictions,
                              references=eval_pred.label_ids)

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
        num_labels=len(labels),
        label2id=label2id,
        id2label=id2label,
        finetuning_task="audio-classification",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForAudioClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # freeze the convolutional waveform encoder
    if model_args.freeze_feature_encoder:
        model.freeze_feature_encoder()

    if training_args.do_train:
        if data_args.max_train_samples is not None:
            raw_datasets["train"] = (raw_datasets["train"].shuffle(
                seed=training_args.seed).select(
                    range(data_args.max_train_samples)))
        # Set the training transforms
        raw_datasets["train"].set_transform(train_transforms,
                                            output_all_columns=False)

    if training_args.do_eval:
        if data_args.max_eval_samples is not None:
            raw_datasets["eval"] = (raw_datasets["eval"].shuffle(
                seed=training_args.seed).select(
                    range(data_args.max_eval_samples)))
        # Set the validation transforms
        raw_datasets["eval"].set_transform(val_transforms,
                                           output_all_columns=False)

    # Initialize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=raw_datasets["train"]
        if training_args.do_train else None,
        eval_dataset=raw_datasets["eval"] if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=feature_extractor,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "audio-classification",
        "dataset": data_args.dataset_name,
        "tags": ["audio-classification"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)
Beispiel #3
0
def main():
    # 1. Parse input arguments
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_speech_recognition_seq2seq", model_args,
                           data_args)

    # 2. Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
    logger.info("Training/evaluation parameters %s", training_args)

    # 3. Detecting last checkpoint and eventualy continue from last checkpoint
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # 4. Load dataset
    raw_datasets = DatasetDict()

    if training_args.do_train:
        raw_datasets["train"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            split=data_args.train_split_name,
            use_auth_token=True if model_args.use_auth_token else None,
        )

    if training_args.do_eval:
        raw_datasets["eval"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            split=data_args.eval_split_name,
            use_auth_token=True if model_args.use_auth_token else None,
        )

    if data_args.audio_column_name not in next(iter(
            raw_datasets.values())).column_names:
        raise ValueError(
            f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--audio_column_name` to the correct audio column - one of "
            f"{', '.join(next(iter(raw_datasets.values())).column_names)}.")

    if data_args.text_column_name not in next(iter(
            raw_datasets.values())).column_names:
        raise ValueError(
            f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--text_column_name` to the correct text column - one of "
            f"{', '.join(next(iter(raw_datasets.values())).column_names)}.")

    # 5. Load pretrained model, tokenizer, and feature extractor
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name if model_args.feature_extractor_name
        else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSpeechSeq2Seq.from_pretrained(
        model_args.model_name_or_path,
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    if model.config.decoder_start_token_id is None:
        raise ValueError(
            "Make sure that `config.decoder_start_token_id` is correctly defined"
        )

    if model_args.freeze_feature_encoder:
        model.freeze_feature_encoder()

    # 6. Resample speech dataset if necassary
    dataset_sampling_rate = next(iter(raw_datasets.values())).features[
        data_args.audio_column_name].sampling_rate
    if dataset_sampling_rate != feature_extractor.sampling_rate:
        raw_datasets = raw_datasets.cast_column(
            data_args.audio_column_name,
            datasets.features.Audio(
                sampling_rate=feature_extractor.sampling_rate))

    # 7. Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
    min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
    audio_column_name = data_args.audio_column_name
    num_workers = data_args.preprocessing_num_workers
    text_column_name = data_args.text_column_name
    model_input_name = feature_extractor.model_input_names[0]
    do_lower_case = data_args.do_lower_case

    if data_args.max_train_samples is not None:
        raw_datasets["train"] = raw_datasets["train"].select(
            range(data_args.max_train_samples))

    if data_args.max_eval_samples is not None:
        raw_datasets["eval"] = raw_datasets["eval"].select(
            range(data_args.max_eval_samples))

    def prepare_dataset(batch):
        # process audio
        sample = batch[audio_column_name]
        inputs = feature_extractor(sample["array"],
                                   sampling_rate=sample["sampling_rate"])
        # process audio length
        batch[model_input_name] = inputs.input_values[0]
        batch["input_length"] = len(batch["input_values"])

        # process targets
        input_str = batch[text_column_name].lower(
        ) if do_lower_case else batch[text_column_name]
        batch["labels"] = tokenizer(input_str).input_ids
        return batch

    with training_args.main_process_first(desc="dataset map pre-processing"):
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            remove_columns=next(iter(raw_datasets.values())).column_names,
            num_proc=data_args.preprocessing_num_workers,
            desc="preprocess train dataset",
        )

    # filter data that is shorter than min_input_length or longer than
    # max_input_length
    def is_audio_in_length_range(length):
        return length > min_input_length and length < max_input_length

    vectorized_datasets = vectorized_datasets.filter(
        is_audio_in_length_range,
        num_proc=num_workers,
        input_columns=["input_length"],
    )

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with `args.preprocessing_only` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step `args.preprocessing_only` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
        logger.info(f"Data preprocessing finished. Files cached at {cache}.")
        return

    # 8. Load Metric
    metric = evaluate.load("wer")

    def compute_metrics(pred):
        pred_ids = pred.predictions

        pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id

        pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
        # we do not want to group tokens when computing the metrics
        label_str = tokenizer.batch_decode(pred.label_ids,
                                           skip_special_tokens=True)

        wer = metric.compute(predictions=pred_str, references=label_str)

        return {"wer": wer}

    # 9. Create a single speech processor
    if is_main_process(training_args.local_rank):
        # save feature extractor, tokenizer and config
        feature_extractor.save_pretrained(training_args.output_dir)
        tokenizer.save_pretrained(training_args.output_dir)
        config.save_pretrained(training_args.output_dir)

    processor = AutoProcessor.from_pretrained(training_args.output_dir)

    # 10. Define data collator
    data_collator = DataCollatorSpeechSeq2SeqWithPadding(
        processor=processor,
        decoder_start_token_id=model.config.decoder_start_token_id)

    # 11. Initialize Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=vectorized_datasets["train"]
        if training_args.do_train else None,
        eval_dataset=vectorized_datasets["eval"]
        if training_args.do_eval else None,
        tokenizer=feature_extractor,
        data_collator=data_collator,
        compute_metrics=compute_metrics
        if training_args.predict_with_generate else None,
    )

    # 12. Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the feature extractor too for easy upload

        metrics = train_result.metrics
        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(vectorized_datasets["train"]))
        metrics["train_samples"] = min(max_train_samples,
                                       len(vectorized_datasets["train"]))
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # 13. Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate(metric_key_prefix="eval",
                                   max_length=model.config.max_length,
                                   num_beams=model.config.num_beams)
        max_eval_samples = (data_args.max_eval_samples
                            if data_args.max_eval_samples is not None else len(
                                vectorized_datasets["eval"]))
        metrics["eval_samples"] = min(max_eval_samples,
                                      len(vectorized_datasets["eval"]))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # 14. Write Training Stats
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "speech recognition"
    }
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs[
                "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)

    return results
Beispiel #4
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # 1. First, let's load the dataset
    raw_datasets = DatasetDict()
    task_name = data_args.task
    lang_id = data_args.language

    if task_name is None:
        raise ValueError("Set --task should be set to '<xtreme_s_task>' "
                         "(e.g. 'fleurs-asr', 'mls', 'covost2', 'minds14') ")
    if lang_id is None:
        raise ValueError(
            "Set --language should be set to the language id of the sub dataset "
            "config to be used (e.g. 'pl', 'en.tr', 'fr-FR') or 'all'"
            " for multi-lingual fine-tuning.")

    if data_args.target_column_name is None:
        target_column_name = TASK_TO_TARGET_COLUMN_NAME[task_name]
    else:
        target_column_name = data_args.target_column_name

    # here we differentiate between tasks with text as the target and classification tasks
    is_text_target = target_column_name in ("transcription", "translation")

    config_name = ".".join([task_name.split("-")[0], lang_id])

    if training_args.do_train:
        raw_datasets["train"] = load_dataset(
            data_args.dataset_name,
            config_name,
            split=data_args.train_split_name,
            use_auth_token=data_args.use_auth_token,
            cache_dir=model_args.cache_dir,
        )

        if data_args.audio_column_name not in raw_datasets[
                "train"].column_names:
            raise ValueError(
                f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
                "Make sure to set `--audio_column_name` to the correct audio column - one of "
                f"{', '.join(raw_datasets['train'].column_names)}.")

        if target_column_name not in raw_datasets["train"].column_names:
            raise ValueError(
                f"--target_column_name {target_column_name} not found in dataset '{data_args.dataset_name}'. "
                "Make sure to set `--target_column_name` to the correct text column - one of "
                f"{', '.join(raw_datasets['train'].column_names)}.")

        if data_args.max_train_samples is not None:
            raw_datasets["train"] = raw_datasets["train"].select(
                range(data_args.max_train_samples))

        if not is_text_target:
            label_list = raw_datasets["train"].features[
                target_column_name].names
            num_labels = len(label_list)

    if training_args.do_eval:
        raw_datasets["eval"] = load_dataset(
            data_args.dataset_name,
            config_name,
            split=data_args.eval_split_name,
            use_auth_token=data_args.use_auth_token,
            cache_dir=model_args.cache_dir,
        )

        if data_args.max_eval_samples is not None:
            raw_datasets["eval"] = raw_datasets["eval"].select(
                range(data_args.max_eval_samples))

    if training_args.do_predict:
        raw_datasets["predict"] = load_dataset(
            data_args.dataset_name,
            config_name,
            split=data_args.predict_split_name,
            use_auth_token=data_args.use_auth_token,
            cache_dir=model_args.cache_dir,
        )

        if data_args.max_predict_samples is not None:
            raw_datasets["predict"] = raw_datasets["predict"].select(
                range(data_args.max_predict_samples))

    # 2. We remove some special characters from the datasets
    # that make training complicated and do not help in transcribing the speech
    # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
    # that could be easily picked up by the model
    chars_to_ignore_regex = (f'[{"".join(data_args.chars_to_ignore)}]' if
                             data_args.chars_to_ignore is not None else None)

    def remove_special_characters(batch):
        if chars_to_ignore_regex is not None:
            batch["target_text"] = re.sub(
                chars_to_ignore_regex, "",
                batch[target_column_name]).lower() + " "
        else:
            batch["target_text"] = batch[target_column_name].lower() + " "
        return batch

    if is_text_target:
        with training_args.main_process_first(
                desc="dataset map special characters removal"):
            raw_datasets = raw_datasets.map(
                remove_special_characters,
                remove_columns=[target_column_name],
                desc="remove special characters from datasets",
            )

        # save special tokens for tokenizer
        word_delimiter_token = data_args.word_delimiter_token
        unk_token = data_args.unk_token
        pad_token = data_args.pad_token

    # 3. Next, let's load the config as we might need it to create
    # the tokenizer
    config = AutoConfig.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_auth_token=data_args.use_auth_token)

    if is_text_target:
        # 4. (Optional, for ASR and translation) If no tokenizer file is defined,
        # we create the vocabulary of the model by extracting all unique characters from
        # the training and evaluation datasets
        # We need to make sure that only first rank saves vocabulary
        # make sure all processes wait until vocab is created
        tokenizer_name_or_path = model_args.tokenizer_name_or_path
        tokenizer_kwargs = {}
        if tokenizer_name_or_path is None:
            # save vocab in training output dir
            tokenizer_name_or_path = training_args.output_dir

            vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")

            with training_args.main_process_first():
                if training_args.overwrite_output_dir and os.path.isfile(
                        vocab_file):
                    os.remove(vocab_file)

            with training_args.main_process_first(
                    desc="dataset map vocabulary creation"):
                if not os.path.isfile(vocab_file):
                    os.makedirs(tokenizer_name_or_path, exist_ok=True)
                    vocab_dict = create_vocabulary_from_data(
                        raw_datasets,
                        word_delimiter_token=word_delimiter_token,
                        unk_token=unk_token,
                        pad_token=pad_token,
                    )

                    # save vocab dict to be loaded into tokenizer
                    with open(vocab_file, "w") as file:
                        json.dump(vocab_dict, file)

            # if tokenizer has just been created
            # it is defined by `tokenizer_class` if present in config else by `model_type`
            if not config.is_encoder_decoder:
                tokenizer_kwargs = {
                    "config":
                    config if config.tokenizer_class is not None else None,
                    "tokenizer_type":
                    config.model_type
                    if config.tokenizer_class is None else None,
                    "unk_token":
                    unk_token,
                    "pad_token":
                    pad_token,
                    "word_delimiter_token":
                    word_delimiter_token,
                }
            else:
                tokenizer_kwargs = {}

    # 5. Now we can instantiate the feature extractor, tokenizer and model
    # Note for distributed training, the .from_pretrained methods guarantee that only
    # one local process can concurrently download model & vocab.

    # load feature_extractor and tokenizer
    if is_text_target:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            use_auth_token=data_args.use_auth_token,
            **tokenizer_kwargs,
        )
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_auth_token=data_args.use_auth_token)

    # adapt config
    config.update({
        "feat_proj_dropout": model_args.feat_proj_dropout,
        "attention_dropout": model_args.attention_dropout,
        "hidden_dropout": model_args.hidden_dropout,
        "final_dropout": model_args.final_dropout,
        "mask_time_prob": model_args.mask_time_prob,
        "mask_time_length": model_args.mask_time_length,
        "mask_feature_prob": model_args.mask_feature_prob,
        "mask_feature_length": model_args.mask_feature_length,
        "gradient_checkpointing": training_args.gradient_checkpointing,
        "layerdrop": model_args.layerdrop,
        "ctc_loss_reduction": model_args.ctc_loss_reduction,
        "activation_dropout": model_args.activation_dropout,
    })
    if training_args.do_train:
        if is_text_target:
            config.pad_token_id = tokenizer.pad_token_id
            config.vocab_size = len(tokenizer)
        else:
            label_to_id = {v: i for i, v in enumerate(label_list)}
            config.label2id = label_to_id
            config.id2label = {id: label for label, id in label_to_id.items()}
            config.num_labels = num_labels

    # create model
    if target_column_name == "transcription":
        model = AutoModelForCTC.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            config=config,
            use_auth_token=data_args.use_auth_token,
        )
    elif config.is_encoder_decoder:
        model = AutoModelForSpeechSeq2Seq.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            config=config,
            use_auth_token=data_args.use_auth_token,
        )
        if model.config.decoder_start_token_id is None:
            raise ValueError(
                "Make sure that `config.decoder_start_token_id` is correctly defined"
            )
    else:
        model = AutoModelForAudioClassification.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
            config=config,
            use_auth_token=data_args.use_auth_token,
        )

    # freeze encoder
    if model_args.freeze_feature_encoder:
        model.freeze_feature_encoder()

    # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
    # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
    # so that we just need to set the correct target sampling rate and normalize the input
    # via the `feature_extractor`

    # make sure that dataset decodes audio with correct sampling rate
    dataset_sampling_rate = next(iter(raw_datasets.values())).features[
        data_args.audio_column_name].sampling_rate
    if dataset_sampling_rate != feature_extractor.sampling_rate:
        raw_datasets = raw_datasets.cast_column(
            data_args.audio_column_name,
            datasets.features.Audio(
                sampling_rate=feature_extractor.sampling_rate))

    # derive max & min input length for sample rate & max duration
    max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
    min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
    audio_column_name = data_args.audio_column_name
    num_workers = data_args.preprocessing_num_workers

    # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
    phoneme_language = data_args.phoneme_language

    # Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    def prepare_dataset(batch):
        # load audio
        sample = batch[audio_column_name]

        inputs = feature_extractor(sample["array"],
                                   sampling_rate=sample["sampling_rate"])
        batch["input_values"] = inputs.input_values[0]
        batch["length"] = len(batch["input_values"])

        # encode targets
        additional_kwargs = {}
        if phoneme_language is not None:
            additional_kwargs["phonemizer_lang"] = phoneme_language

        if is_text_target:
            batch["labels"] = tokenizer(batch["target_text"],
                                        **additional_kwargs).input_ids
        else:
            batch["labels"] = batch[target_column_name]
        return batch

    with training_args.main_process_first(desc="dataset map preprocessing"):
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            remove_columns=next(iter(raw_datasets.values())).column_names,
            num_proc=num_workers,
            desc="preprocess datasets",
        )

        if training_args.do_train:

            def is_audio_in_length_range(length):
                return length > min_input_length and length < max_input_length

            # filter data that is shorter than min_input_length
            vectorized_datasets["train"] = vectorized_datasets["train"].filter(
                is_audio_in_length_range,
                num_proc=num_workers,
                input_columns=["length"],
            )

    # 7. Next, we can prepare for the training step.
    # Let's use the appropriate XTREME-S evaluation metric,
    # instantiate a data collator and the trainer

    # Define evaluation metrics during training, *i.e.* word error rate, character error rate
    eval_metric = load_metric("xtreme_s", task_name)

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with ``args.preprocessing_only`` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        logger.info(
            f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}"
        )
        return

    def compute_asr_metric(pred):
        pred_logits = pred.predictions
        pred_ids = np.argmax(pred_logits, axis=-1)

        pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id

        pred_str = tokenizer.batch_decode(pred_ids)
        # we do not want to group tokens when computing the metrics
        label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)

        metric = eval_metric.compute(predictions=pred_str,
                                     references=label_str)
        return metric

    def compute_classification_metric(pred):
        pred_ids = np.argmax(pred.predictions, axis=1)
        metric = eval_metric.compute(predictions=pred_ids,
                                     references=pred.label_ids)
        return metric

    # Now save everything to be able to create a single processor later
    if is_main_process(training_args.local_rank):
        # save feature extractor, tokenizer and config
        feature_extractor.save_pretrained(training_args.output_dir)
        if is_text_target:
            tokenizer.save_pretrained(training_args.output_dir)
        config.save_pretrained(training_args.output_dir)
    # wait until configs are saved in the main process before loading the processor
    torch.distributed.barrier()

    if is_text_target:
        processor = AutoProcessor.from_pretrained(training_args.output_dir)
    else:
        processor = AutoFeatureExtractor.from_pretrained(
            training_args.output_dir)

    # Instantiate custom data collator
    data_collator = SpeechDataCollatorWithPadding(processor=processor,
                                                  pad_labels=is_text_target)

    # Initialize Trainer
    if target_column_name == "translation":
        trainer = Seq2SeqTrainer(
            model=model,
            data_collator=data_collator,
            args=training_args,
            compute_metrics=compute_asr_metric
            if training_args.predict_with_generate else None,
            train_dataset=vectorized_datasets["train"]
            if training_args.do_train else None,
            eval_dataset=vectorized_datasets["eval"]
            if training_args.do_eval else None,
            tokenizer=feature_extractor,
        )
    else:
        trainer = Trainer(
            model=model,
            data_collator=data_collator,
            args=training_args,
            compute_metrics=compute_asr_metric
            if is_text_target else compute_classification_metric,
            train_dataset=vectorized_datasets["train"]
            if training_args.do_train else None,
            eval_dataset=vectorized_datasets["eval"]
            if training_args.do_eval else None,
            tokenizer=feature_extractor,
        )

    # 8. Finally, we can start training

    # Training
    if training_args.do_train:

        # use last checkpoint if exist
        if last_checkpoint is not None:
            checkpoint = last_checkpoint
        elif os.path.isdir(model_args.model_name_or_path):
            checkpoint = model_args.model_name_or_path
        else:
            checkpoint = None

        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()

        metrics = train_result.metrics
        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(vectorized_datasets["train"]))
        metrics["train_samples"] = min(max_train_samples,
                                       len(vectorized_datasets["train"]))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation on the test set
    results = {}
    if training_args.do_predict:
        logger.info(
            f"*** Evaluating on the `{data_args.predict_split_name}` set ***")
        metrics = trainer.evaluate(vectorized_datasets["predict"])
        max_predict_samples = (data_args.max_predict_samples
                               if data_args.max_predict_samples is not None
                               else len(vectorized_datasets["predict"]))
        metrics["predict_samples"] = min(max_predict_samples,
                                         len(vectorized_datasets["predict"]))

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": task_name,
        "tags": [task_name, data_args.dataset_name],
        "dataset_args":
        f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}, Predict split: {data_args.predict_split_name}",
        "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
        "language": data_args.language,
    }

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)

    return results
Beispiel #5
0
def main():
    raw_datasets = DatasetDict()
    raw_datasets["train"] = load_dataset(data_args.dataset_name,
                                         data_args.dataset_config,
                                         split=data_args.train_split_name)
    raw_datasets["eval"] = load_dataset(data_args.dataset_name,
                                        data_args.dataset_config,
                                        split=data_args.eval_split_name)

    if data_args.audio_column not in raw_datasets["train"].column_names:
        raise ValueError(
            f"--audio_column {data_args.audio_column} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--audio_column` to the correct audio column - one of "
            f"{', '.join(raw_datasets['train'].column_names)}.")

    if data_args.label_column not in raw_datasets["train"].column_names:
        raise ValueError(
            f"--label_column {data_args.label_column} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--label_column` to the correct text column - one of "
            f"{', '.join(raw_datasets['train'].column_names)}.")

    # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
    # transformer outputs in the classifier, but it doesn't always lead to better accuracy
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor or model_args.model_name,
        return_attention_mask=model_args.mask,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_version,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # `datasets` takes care of automatically loading and resampling the audio,
    # so we just need to set the correct target sampling rate.
    raw_datasets = raw_datasets.cast_column(
        data_args.audio_column,
        datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate),
    )

    def train_transforms(batch):
        """Apply train_transforms across a batch."""
        output_batch = {"input_values": []}
        for audio in batch[data_args.audio_column]:
            wav = random_subsample(
                audio["array"],
                max_len=data_args.max_length_seconds,
                sample_rate=feature_extractor.sampling_rate,
            )
            output_batch["input_values"].append(wav)
        output_batch["labels"] = [
            label for label in batch[data_args.label_column]
        ]

        return output_batch

    def val_transforms(batch):
        """Apply val_transforms across a batch."""
        output_batch = {"input_values": []}
        for audio in batch[data_args.audio_column]:
            wav = audio["array"]
            output_batch["input_values"].append(wav)
        output_batch["labels"] = [
            label for label in batch[data_args.label_column]
        ]

        return output_batch

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
    labels = raw_datasets["train"].features[data_args.label_column].names
    label2id, id2label = dict(), dict()
    for i, label in enumerate(labels):
        label2id[label] = str(i)
        id2label[str(i)] = label

    # Load the accuracy metric from the datasets package
    metric = datasets.load_metric("accuracy")

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
    # `predictions` and `label_ids` fields) and has to return a dictionary string to float.
    def compute_metrics(eval_pred):
        """Computes accuracy on a batch of predictions"""
        predictions = np.argmax(eval_pred.predictions, axis=1)
        return metric.compute(predictions=predictions,
                              references=eval_pred.label_ids)

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name,
        n_labels=len(labels),
        label2id=label2id,
        id2label=id2label,
        finetune="audio-classification",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_version,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForAudioClassification.from_pretrained(
        model_args.model_name,
        from_tf=bool(".ckpt" in model_args.model_name),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_version,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # freeze the convolutional waveform encoder
    if model_args.freeze_feature_encoder:
        model.freeze_feature_encoder()

    if training_args.do_train:
        if data_args.max_train_samples is not None:
            raw_datasets["train"] = (raw_datasets["train"].shuffle(
                seed=training_args.seed).select(
                    range(data_args.max_train_samples)))
        # Set the training transforms
        raw_datasets["train"].set_transform(train_transforms,
                                            output_all_columns=False)

    if training_args.do_eval:
        if data_args.max_eval_samples is not None:
            raw_datasets["eval"] = (raw_datasets["eval"].shuffle(
                seed=training_args.seed).select(
                    range(data_args.max_eval_samples)))
        # Set the validation transforms
        raw_datasets["eval"].set_transform(val_transforms,
                                           output_all_columns=False)

    # Initialize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=raw_datasets["train"]
        if training_args.do_train else None,
        eval_dataset=raw_datasets["eval"] if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=feature_extractor,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kw = {
        "finetuned_from": model_args.model_name,
        "tasks": "audio-classification",
        "dataset": data_args.dataset_name,
        "tags": ["audio-classification"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kw)
    else:
        trainer.create_model_card(**kw)
def main():
    raw_datasets = DatasetDict()

    if training_args.do_train:
        raw_datasets["train"] = load_dataset(data_args.dataset_name,
                                             data_args.dataset_config,
                                             split=data_args.train_split_name)

    if training_args.do_eval:
        raw_datasets["eval"] = load_dataset(data_args.dataset_name,
                                            data_args.dataset_config,
                                            split=data_args.eval_split_name)

    if data_args.audio_column not in next(iter(
            raw_datasets.values())).column_names:
        raise ValueError(
            f"--audio_column '{data_args.audio_column}' not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--audio_column` to the correct audio column - one of "
            f"{', '.join(next(iter(raw_datasets.values())).column_names)}.")

    if data_args.text_column not in next(iter(
            raw_datasets.values())).column_names:
        raise ValueError(
            f"--text_column {data_args.text_column} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--text_column` to the correct text column - one of "
            f"{', '.join(next(iter(raw_datasets.values())).column_names)}.")

    # 5. Load pretrained model, tokenizer, and feature extractor
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_version,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor
        if model_args.feature_extractor else model_args.model_name,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_version,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_version,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSpeechSeq2Seq.from_pretrained(
        model_args.model_name,
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_version,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    if model.config.dec_START is None:
        raise ValueError(
            "Make sure that `config.dec_START` is correctly defined")

    if model_args.freeze_feature_encoder:
        model.freeze_feature_encoder()

    # 6. Resample speech dataset if necassary
    dataset_sampling_rate = (next(iter(
        raw_datasets.values())).features[data_args.audio_column].sampling_rate)
    if dataset_sampling_rate != feature_extractor.sampling_rate:
        raw_datasets = raw_datasets.cast_column(
            data_args.audio_column,
            datasets.features.Audio(
                sampling_rate=feature_extractor.sampling_rate),
        )

    # 7. Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    max_input_length = data_args.max_duration * feature_extractor.sampling_rate
    min_input_length = data_args.min_duration * feature_extractor.sampling_rate
    audio_column = data_args.audio_column
    num_workers = data_args.num_workers
    text_column = data_args.text_column
    model_input_name = feature_extractor.model_input_names[0]
    lower_case = data_args.lower_case

    if data_args.max_train_samples is not None:
        raw_datasets["train"] = raw_datasets["train"].select(
            range(data_args.max_train_samples))

    if data_args.max_eval_samples is not None:
        raw_datasets["eval"] = raw_datasets["eval"].select(
            range(data_args.max_eval_samples))

    def prepare_dataset(batch):
        # process audio
        sample = batch[audio_column]
        inputs = feature_extractor(sample["array"],
                                   sampling_rate=sample["sampling_rate"])
        # process audio length
        batch[model_input_name] = inputs.input_values[0]
        batch["input_length"] = len(batch["input_values"])

        # process targets
        input_str = batch[text_column].lower(
        ) if lower_case else batch[text_column]
        batch["labels"] = tokenizer(input_str).input_ids
        return batch

    with training_args.main_process_first(desc="dataset map pre-processing"):
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            remove_columns=next(iter(raw_datasets.values())).column_names,
            num_proc=data_args.num_workers,
            desc="preprocess train dataset",
        )

    # filter data that is shorter than min_input_length or longer than
    # max_input_length
    def is_audio_in_length_range(length):
        return length > min_input_length and length < max_input_length

    vectorized_datasets = vectorized_datasets.filter(
        is_audio_in_length_range,
        num_proc=num_workers,
        input_columns=["input_length"],
    )

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with `args.preprocessing_only` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step `args.preprocessing_only` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
        logger.info(f"Data preprocessing finished. Files cached at {cache}.")
        return

    # 8. Load Metric
    metric = load_metric("wer")

    def compute_metrics(pred):
        pred_ids = pred.predictions

        pred.label_ids[pred.label_ids == -100] = tokenizer.PAD

        pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
        # we do not want to group tokens when computing the metrics
        label_str = tokenizer.batch_decode(pred.label_ids,
                                           skip_special_tokens=True)

        wer = metric.compute(predictions=pred_str, references=label_str)

        return {"wer": wer}

    # 9. Create a single speech processor
    if is_main_process(training_args.local_rank):
        # save feature extractor, tokenizer and config
        feature_extractor.save_pretrained(training_args.out_dir)
        tokenizer.save_pretrained(training_args.out_dir)
        config.save_pretrained(training_args.out_dir)

    processor = AutoProcessor.from_pretrained(training_args.out_dir)

    # 10. Define data collator
    data_collator = DataCollatorSpeechSeq2SeqWithPadding(
        processor=processor, dec_START=model.config.dec_START)

    # 11. Initialize Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=vectorized_datasets["train"]
        if training_args.do_train else None,
        eval_dataset=vectorized_datasets["eval"]
        if training_args.do_eval else None,
        tokenizer=feature_extractor,
        data_collator=data_collator,
        compute_metrics=compute_metrics
        if training_args.test_with_gen else None,
    )

    # 12. Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the feature extractor too for easy upload

        metrics = train_result.metrics
        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(vectorized_datasets["train"]))
        metrics["train_samples"] = min(max_train_samples,
                                       len(vectorized_datasets["train"]))
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # 13. Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate(
            metric_key_prefix="eval",
            max_len=model.config.max_len,
            n_beams=model.config.n_beams,
        )
        max_eval_samples = (data_args.max_eval_samples
                            if data_args.max_eval_samples is not None else len(
                                vectorized_datasets["eval"]))
        metrics["eval_samples"] = min(max_eval_samples,
                                      len(vectorized_datasets["eval"]))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # 14. Write Training Stats
    kw = {
        "finetuned_from": model_args.model_name,
        "tasks": "speech recognition"
    }
    if data_args.dataset_name is not None:
        kw["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config is not None:
            kw["dataset_args"] = data_args.dataset_config
            kw["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config}"
        else:
            kw["dataset"] = data_args.dataset_name

    if training_args.push_to_hub:
        trainer.push_to_hub(**kw)
    else:
        trainer.create_model_card(**kw)

    return results
Beispiel #7
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_speech_recognition_ctc", model_args, data_args)

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # 1. First, let's load the dataset
    raw_datasets = DatasetDict()

    if training_args.do_train:
        raw_datasets["train"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            split=data_args.train_split_name,
            use_auth_token=data_args.use_auth_token,
        )

        if data_args.audio_column_name not in raw_datasets[
                "train"].column_names:
            raise ValueError(
                f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'."
                " Make sure to set `--audio_column_name` to the correct audio column - one of"
                f" {', '.join(raw_datasets['train'].column_names)}.")

        if data_args.text_column_name not in raw_datasets[
                "train"].column_names:
            raise ValueError(
                f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
                "Make sure to set `--text_column_name` to the correct text column - one of "
                f"{', '.join(raw_datasets['train'].column_names)}.")

        if data_args.max_train_samples is not None:
            raw_datasets["train"] = raw_datasets["train"].select(
                range(data_args.max_train_samples))

    if training_args.do_eval:
        raw_datasets["eval"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            split=data_args.eval_split_name,
            use_auth_token=data_args.use_auth_token,
        )

        if data_args.max_eval_samples is not None:
            raw_datasets["eval"] = raw_datasets["eval"].select(
                range(data_args.max_eval_samples))

    # 2. We remove some special characters from the datasets
    # that make training complicated and do not help in transcribing the speech
    # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
    # that could be easily picked up by the model
    chars_to_ignore_regex = (f'[{"".join(data_args.chars_to_ignore)}]' if
                             data_args.chars_to_ignore is not None else None)
    text_column_name = data_args.text_column_name

    def remove_special_characters(batch):
        if chars_to_ignore_regex is not None:
            batch["target_text"] = re.sub(
                chars_to_ignore_regex, "",
                batch[text_column_name]).lower() + " "
        else:
            batch["target_text"] = batch[text_column_name].lower() + " "
        return batch

    with training_args.main_process_first(
            desc="dataset map special characters removal"):
        raw_datasets = raw_datasets.map(
            remove_special_characters,
            remove_columns=[text_column_name],
            desc="remove special characters from datasets",
        )

    # save special tokens for tokenizer
    word_delimiter_token = data_args.word_delimiter_token
    unk_token = data_args.unk_token
    pad_token = data_args.pad_token

    # 3. Next, let's load the config as we might need it to create
    # the tokenizer
    # load config
    config = AutoConfig.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_auth_token=data_args.use_auth_token)

    # 4. Next, if no tokenizer file is defined,
    # we create the vocabulary of the model by extracting all unique characters from
    # the training and evaluation datasets
    # We need to make sure that only first rank saves vocabulary
    # make sure all processes wait until vocab is created
    tokenizer_name_or_path = model_args.tokenizer_name_or_path
    tokenizer_kwargs = {}
    if tokenizer_name_or_path is None:
        # save vocab in training output dir
        tokenizer_name_or_path = training_args.output_dir

        vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")

        with training_args.main_process_first():
            if training_args.overwrite_output_dir and os.path.isfile(
                    vocab_file):
                try:
                    os.remove(vocab_file)
                except OSError:
                    # in shared file-systems it might be the case that
                    # two processes try to delete the vocab file at the some time
                    pass

        with training_args.main_process_first(
                desc="dataset map vocabulary creation"):
            if not os.path.isfile(vocab_file):
                os.makedirs(tokenizer_name_or_path, exist_ok=True)
                vocab_dict = create_vocabulary_from_data(
                    raw_datasets,
                    word_delimiter_token=word_delimiter_token,
                    unk_token=unk_token,
                    pad_token=pad_token,
                )

                # save vocab dict to be loaded into tokenizer
                with open(vocab_file, "w") as file:
                    json.dump(vocab_dict, file)

        # if tokenizer has just been created
        # it is defined by `tokenizer_class` if present in config else by `model_type`
        tokenizer_kwargs = {
            "config":
            config if config.tokenizer_class is not None else None,
            "tokenizer_type":
            config.model_type if config.tokenizer_class is None else None,
            "unk_token":
            unk_token,
            "pad_token":
            pad_token,
            "word_delimiter_token":
            word_delimiter_token,
        }

    # 5. Now we can instantiate the feature extractor, tokenizer and model
    # Note for distributed training, the .from_pretrained methods guarantee that only
    # one local process can concurrently download model & vocab.

    # load feature_extractor and tokenizer
    tokenizer = AutoTokenizer.from_pretrained(
        tokenizer_name_or_path,
        use_auth_token=data_args.use_auth_token,
        **tokenizer_kwargs,
    )
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_auth_token=data_args.use_auth_token)

    # adapt config
    config.update({
        "feat_proj_dropout": model_args.feat_proj_dropout,
        "attention_dropout": model_args.attention_dropout,
        "hidden_dropout": model_args.hidden_dropout,
        "final_dropout": model_args.final_dropout,
        "mask_time_prob": model_args.mask_time_prob,
        "mask_time_length": model_args.mask_time_length,
        "mask_feature_prob": model_args.mask_feature_prob,
        "mask_feature_length": model_args.mask_feature_length,
        "gradient_checkpointing": training_args.gradient_checkpointing,
        "layerdrop": model_args.layerdrop,
        "ctc_loss_reduction": model_args.ctc_loss_reduction,
        "pad_token_id": tokenizer.pad_token_id,
        "vocab_size": len(tokenizer),
        "activation_dropout": model_args.activation_dropout,
    })

    # create model
    model = AutoModelForCTC.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        config=config,
        use_auth_token=data_args.use_auth_token,
    )

    # freeze encoder
    if model_args.freeze_feature_encoder:
        model.freeze_feature_encoder()

    # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
    # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
    # so that we just need to set the correct target sampling rate and normalize the input
    # via the `feature_extractor`

    # make sure that dataset decodes audio with correct sampling rate
    dataset_sampling_rate = next(iter(raw_datasets.values())).features[
        data_args.audio_column_name].sampling_rate
    if dataset_sampling_rate != feature_extractor.sampling_rate:
        raw_datasets = raw_datasets.cast_column(
            data_args.audio_column_name,
            datasets.features.Audio(
                sampling_rate=feature_extractor.sampling_rate))

    # derive max & min input length for sample rate & max duration
    max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
    min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
    audio_column_name = data_args.audio_column_name
    num_workers = data_args.preprocessing_num_workers

    # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
    phoneme_language = data_args.phoneme_language

    # Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    def prepare_dataset(batch):
        # load audio
        sample = batch[audio_column_name]

        inputs = feature_extractor(sample["array"],
                                   sampling_rate=sample["sampling_rate"])
        batch["input_values"] = inputs.input_values[0]
        batch["input_length"] = len(batch["input_values"])

        # encode targets
        additional_kwargs = {}
        if phoneme_language is not None:
            additional_kwargs["phonemizer_lang"] = phoneme_language

        batch["labels"] = tokenizer(batch["target_text"],
                                    **additional_kwargs).input_ids
        return batch

    with training_args.main_process_first(desc="dataset map preprocessing"):
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            remove_columns=next(iter(raw_datasets.values())).column_names,
            num_proc=num_workers,
            desc="preprocess datasets",
        )

        def is_audio_in_length_range(length):
            return length > min_input_length and length < max_input_length

        # filter data that is shorter than min_input_length
        vectorized_datasets = vectorized_datasets.filter(
            is_audio_in_length_range,
            num_proc=num_workers,
            input_columns=["input_length"],
        )

    # 7. Next, we can prepare the training.
    # Let's use word error rate (WER) as our evaluation metric,
    # instantiate a data collator and the trainer

    # Define evaluation metrics during training, *i.e.* word error rate, character error rate
    eval_metrics = {
        metric: evaluate.load(metric)
        for metric in data_args.eval_metrics
    }

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with ``args.preprocessing_only`` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        logger.info(
            f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}"
        )
        return

    def compute_metrics(pred):
        pred_logits = pred.predictions
        pred_ids = np.argmax(pred_logits, axis=-1)

        pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id

        pred_str = tokenizer.batch_decode(pred_ids)
        # we do not want to group tokens when computing the metrics
        label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)

        metrics = {
            k: v.compute(predictions=pred_str, references=label_str)
            for k, v in eval_metrics.items()
        }

        return metrics

    # Now save everything to be able to create a single processor later
    if is_main_process(training_args.local_rank):
        # save feature extractor, tokenizer and config
        feature_extractor.save_pretrained(training_args.output_dir)
        tokenizer.save_pretrained(training_args.output_dir)
        config.save_pretrained(training_args.output_dir)

    try:
        processor = AutoProcessor.from_pretrained(training_args.output_dir)
    except (OSError, KeyError):
        warnings.warn(
            "Loading a processor from a feature extractor config that does not"
            " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
            " attribute to your `preprocessor_config.json` file to suppress this warning: "
            " `'processor_class': 'Wav2Vec2Processor'`",
            FutureWarning,
        )
        processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)

    # Instantiate custom data collator
    data_collator = DataCollatorCTCWithPadding(processor=processor)

    # Initialize Trainer
    trainer = Trainer(
        model=model,
        data_collator=data_collator,
        args=training_args,
        compute_metrics=compute_metrics,
        train_dataset=vectorized_datasets["train"]
        if training_args.do_train else None,
        eval_dataset=vectorized_datasets["eval"]
        if training_args.do_eval else None,
        tokenizer=feature_extractor,
    )

    # 8. Finally, we can start training

    # Training
    if training_args.do_train:

        # use last checkpoint if exist
        if last_checkpoint is not None:
            checkpoint = last_checkpoint
        elif os.path.isdir(model_args.model_name_or_path):
            checkpoint = model_args.model_name_or_path
        else:
            checkpoint = None

        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()

        metrics = train_result.metrics
        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(vectorized_datasets["train"]))
        metrics["train_samples"] = min(max_train_samples,
                                       len(vectorized_datasets["train"]))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate()
        max_eval_samples = (data_args.max_eval_samples
                            if data_args.max_eval_samples is not None else len(
                                vectorized_datasets["eval"]))
        metrics["eval_samples"] = min(max_eval_samples,
                                      len(vectorized_datasets["eval"]))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
    kwargs = {
        "finetuned_from":
        model_args.model_name_or_path,
        "tasks":
        "speech-recognition",
        "tags": ["automatic-speech-recognition", data_args.dataset_name],
        "dataset_args":
        (f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
         f" {data_args.eval_split_name}"),
        "dataset":
        f"{data_args.dataset_name.upper()} - {config_name.upper()}",
    }
    if "common_voice" in data_args.dataset_name:
        kwargs["language"] = config_name

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)

    return results
def main():
    # See all possible arguments in src/transformers/args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    accelerator = Accelerator()
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()

        # set up weights and biases if available
        if is_wandb_available():
            import wandb

            wandb.init(project=args.output_dir.split("/")[-1])
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub and not args.preprocessing_only:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # 1. Download and create train, validation dataset
    # We load all dataset configuration and datset split pairs passed in
    # ``args.dataset_config_names`` and ``args.dataset_split_names``
    datasets_splits = []
    for dataset_config_name, train_split_name in zip(args.dataset_config_names, args.dataset_split_names):
        # load dataset
        dataset_split = load_dataset(
            args.dataset_name,
            dataset_config_name,
            split=train_split_name,
            cache_dir=args.cache_dir,
        )
        datasets_splits.append(dataset_split)

    # Next, we concatenate all configurations and splits into a single training dataset
    raw_datasets = DatasetDict()
    if len(datasets_splits) > 1:
        raw_datasets["train"] = concatenate_datasets(datasets_splits).shuffle(seed=args.seed)
    else:
        raw_datasets["train"] = datasets_splits[0]

    # Take ``args.validation_split_percentage`` from the training dataset for the validation_split_percentage
    num_validation_samples = raw_datasets["train"].num_rows * args.validation_split_percentage // 100

    if num_validation_samples == 0:
        raise ValueError(
            "`args.validation_split_percentage` is less than a single sample "
            f"for {len(raw_datasets['train'])} training samples. Increase "
            "`args.num_validation_split_percentage`. "
        )

    raw_datasets["validation"] = raw_datasets["train"].select(range(num_validation_samples))
    raw_datasets["train"] = raw_datasets["train"].select(range(num_validation_samples, raw_datasets["train"].num_rows))

    # 2. Now we preprocess the datasets including loading the audio, resampling and normalization
    # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
    # so that we just need to set the correct target sampling rate and normalize the input
    # via the `feature_extractor`
    feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(args.model_name_or_path)

    # make sure that dataset decodes audio with correct sampling rate
    raw_datasets = raw_datasets.cast_column(
        args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
    )

    # only normalized-inputs-training is supported
    if not feature_extractor.do_normalize:
        raise ValueError(
            "Training is only supported for normalized inputs. Make sure ``feature_extractor.do_normalize == True``"
        )

    # set max & min audio length in number of samples
    max_length = int(args.max_duration_in_seconds * feature_extractor.sampling_rate)
    min_length = int(args.min_duration_in_seconds * feature_extractor.sampling_rate)

    def prepare_dataset(batch):
        sample = batch[args.audio_column_name]

        inputs = feature_extractor(
            sample["array"], sampling_rate=sample["sampling_rate"], max_length=max_length, truncation=True
        )
        batch["input_values"] = inputs.input_values[0]
        batch["input_length"] = len(inputs.input_values[0])

        return batch

    # load via mapped files via path
    cache_file_names = None
    if args.train_cache_file_name is not None:
        cache_file_names = {"train": args.train_cache_file_name, "validation": args.validation_cache_file_name}

    # load audio files into numpy arrays
    with accelerator.main_process_first():
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            num_proc=args.preprocessing_num_workers,
            remove_columns=raw_datasets["train"].column_names,
            cache_file_names=cache_file_names,
        )

        if min_length > 0.0:
            vectorized_datasets = vectorized_datasets.filter(
                lambda x: x > min_length,
                num_proc=args.preprocessing_num_workers,
                input_columns=["input_length"],
            )

        vectorized_datasets = vectorized_datasets.remove_columns("input_length")

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with ``args.preprocessing_only`` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
    # cached dataset
    if args.preprocessing_only:
        return

    # 3. Load model
    config = Wav2Vec2Config.from_pretrained(args.model_name_or_path)

    # pretraining is only supported for "newer" stable layer norm architecture
    # apply_spec_augment has to be True, mask_feature_prob has to be 0.0
    if not config.do_stable_layer_norm or config.feat_extract_norm != "layer":
        raise ValueError(
            "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and"
            " ``config.feat_extract_norm='layer'"
        )

    # initialize random model
    model = Wav2Vec2ForPreTraining(config)

    # Activate gradient checkpointing if needed
    if args.gradient_checkpointing:
        model.gradient_checkpointing_enable()

    # 4. Define data collator, optimizer and scheduler
    data_collator = DataCollatorForWav2Vec2Pretraining(
        model=model, feature_extractor=feature_extractor, pad_to_multiple_of=args.pad_to_multiple_of
    )
    train_dataloader = DataLoader(
        vectorized_datasets["train"],
        shuffle=True,
        collate_fn=data_collator,
        batch_size=args.per_device_train_batch_size,
    )
    eval_dataloader = DataLoader(
        vectorized_datasets["validation"], collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
    )

    # Optimizer
    optimizer = AdamW(
        list(model.parameters()),
        lr=args.learning_rate,
        betas=[args.adam_beta1, args.adam_beta2],
        eps=args.adam_epsilon,
    )

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader
    )

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)

    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # 5. Train
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(vectorized_datasets['train'])}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    completed_steps = 0
    starting_epoch = 0

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
    completed_steps = 0
    starting_epoch = 0
    for epoch in range(starting_epoch, args.num_train_epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            # compute num of losses
            num_losses = batch["mask_time_indices"].sum()
            sub_attention_mask = batch.pop("sub_attention_mask", None)
            sub_attention_mask = (
                sub_attention_mask if sub_attention_mask is not None else torch.ones_like(batch["mask_time_indices"])
            )
            percent_masked = num_losses / sub_attention_mask.sum()

            # forward
            outputs = model(**batch)

            # divide loss by gradient accumulation steps since gradients
            # are accumulated for multiple backward passes in PyTorch
            loss = outputs.loss / args.gradient_accumulation_steps
            accelerator.backward(loss)

            # make sure that `num_losses` is summed for distributed training
            # and average gradients over losses of all devices
            if accelerator.state.num_processes > 1:
                num_losses = accelerator.gather(num_losses).sum()
                gradient_multiplier = accelerator.state.num_processes / num_losses
                multiply_grads(model.module.parameters(), gradient_multiplier)
            else:
                multiply_grads(model.parameters(), 1 / num_losses)

            # update step
            if (step + 1) % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:

                # compute grad norm for monitoring
                scale = (
                    accelerator.scaler._scale.item()
                    if hasattr(accelerator, "scaler") and accelerator.scaler is not None
                    else 1
                )
                if accelerator.state.num_processes > 1:
                    grad_norm = get_grad_norm(model.module.parameters(), scale)
                else:
                    grad_norm = get_grad_norm(model.parameters(), scale)

                # update parameters
                optimizer.step()
                optimizer.zero_grad()

                if not accelerator.optimizer_step_was_skipped:
                    lr_scheduler.step()
                elif accelerator.is_local_main_process:
                    progress_bar.write(
                        f"Gradients have overflown - skipping update step... Updating gradient scale to {scale}..."
                    )

                # update gumbel temperature
                gumbel_temperature = max(
                    args.max_gumbel_temperature * args.gumbel_temperature_decay**completed_steps,
                    args.min_gumbel_temperature,
                )
                if hasattr(model, "module"):
                    model.module.set_gumbel_temperature(gumbel_temperature)
                else:
                    model.set_gumbel_temperature(gumbel_temperature)

                progress_bar.update(1)
                completed_steps += 1

            # 6. Log all results
            if (step + 1) % (args.gradient_accumulation_steps * args.logging_steps) == 0:
                loss.detach()
                outputs.contrastive_loss.detach()
                outputs.diversity_loss.detach()

                if accelerator.state.num_processes > 1:
                    loss = accelerator.gather(loss).sum()
                    outputs.contrastive_loss = accelerator.gather(outputs.contrastive_loss).sum()
                    outputs.diversity_loss = accelerator.gather(outputs.diversity_loss).sum()
                    percent_masked = accelerator.gather(percent_masked).sum()

                train_logs = {
                    "loss": (loss * args.gradient_accumulation_steps) / num_losses,
                    "constrast_loss": outputs.contrastive_loss / num_losses,
                    "div_loss": outputs.diversity_loss / num_losses,
                    "%_mask_idx": percent_masked / accelerator.num_processes,
                    "ppl": outputs.codevector_perplexity,
                    "lr": torch.tensor(optimizer.param_groups[0]["lr"]),
                    "temp": torch.tensor(gumbel_temperature),
                    "grad_norm": torch.tensor(grad_norm),
                }
                log_str = ""
                for k, v in train_logs.items():
                    log_str += "| {}: {:.3e}".format(k, v.item())

                if accelerator.is_local_main_process:
                    progress_bar.write(log_str)
                    if is_wandb_available():
                        wandb.log(train_logs)

            # save model every `args.saving_steps` steps
            if (step + 1) % (args.gradient_accumulation_steps * args.saving_steps) == 0:
                if (args.push_to_hub and epoch < args.num_train_epochs - 1) or args.output_dir is not None:
                    accelerator.wait_for_everyone()
                    unwrapped_model = accelerator.unwrap_model(model)
                    unwrapped_model.save_pretrained(
                        args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
                    )

                if (args.push_to_hub and epoch < args.num_train_epochs - 1) and accelerator.is_main_process:
                    repo.push_to_hub(
                        commit_message=f"Training in progress step {completed_steps}",
                        blocking=False,
                        auto_lfs_prune=True,
                    )

            # if completed steps > `args.max_train_steps` stop
            if completed_steps >= args.max_train_steps:
                break

        # 7. Validate!
        model.eval()

        # init logs
        val_logs = {
            "val_loss": 0,
            "val_contrastive_loss": 0,
            "val_diversity_loss": 0,
            "val_num_losses": 0,
        }
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                batch.pop("sub_attention_mask", None)
                outputs = model(**batch)

            val_logs["val_loss"] += outputs.loss
            val_logs["val_contrastive_loss"] += outputs.contrastive_loss
            val_logs["val_diversity_loss"] += outputs.diversity_loss
            val_logs["val_num_losses"] += batch["mask_time_indices"].sum()

        # sum over devices in multi-processing
        if accelerator.num_processes > 1:
            val_logs = {k: accelerator.gather(v).sum() for k, v in val_logs.items()}

        val_logs = {k: v / val_logs["val_num_losses"] for k, v in val_logs.items()}

        log_str = ""
        for k, v in val_logs.items():
            log_str += "| {}: {:.3e}".format(k, v.item())

        if accelerator.is_local_main_process:
            progress_bar.write(log_str)
            if is_wandb_available():
                wandb.log(val_logs)

        if args.output_dir is not None:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(
                args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
            )
            if accelerator.is_main_process:
                if args.push_to_hub:
                    repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
Beispiel #9
0
def main():
    raw_datasets = DatasetDict()

    if training_args.do_train:
        raw_datasets["train"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config,
            split=data_args.train_split_name,
            use_auth_token=data_args.use_auth_token,
        )

        if data_args.audio_column not in raw_datasets["train"].column_names:
            raise ValueError(
                f"--audio_column '{data_args.audio_column}' not found in dataset '{data_args.dataset_name}'. "
                "Make sure to set `--audio_column` to the correct audio column - one of "
                f"{', '.join(raw_datasets['train'].column_names)}."
            )

        if data_args.text_column not in raw_datasets["train"].column_names:
            raise ValueError(
                f"--text_column {data_args.text_column} not found in dataset '{data_args.dataset_name}'. "
                "Make sure to set `--text_column` to the correct text column - one of "
                f"{', '.join(raw_datasets['train'].column_names)}."
            )

        if data_args.max_train_samples is not None:
            raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))

    if training_args.do_eval:
        raw_datasets["eval"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config,
            split=data_args.eval_split_name,
            use_auth_token=data_args.use_auth_token,
        )

        if data_args.max_eval_samples is not None:
            raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))

    # 2. We remove some special characters from the datasets
    # that make training complicated and do not help in transcribing the speech
    # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
    # that could be easily picked up by the model
    chars_to_ignore_regex = (
        f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
    )
    text_column = data_args.text_column

    def remove_special_characters(batch):
        if chars_to_ignore_regex is not None:
            batch["target_text"] = (
                re.sub(chars_to_ignore_regex, "", batch[text_column]).lower() + " "
            )
        else:
            batch["target_text"] = batch[text_column].lower() + " "
        return batch

    with training_args.main_process_first(desc="dataset map special characters removal"):
        raw_datasets = raw_datasets.map(
            remove_special_characters,
            remove_columns=[text_column],
            desc="remove special characters from datasets",
        )

    # save special tokens for tokenizer
    word_delimiter_token = data_args.word_delimiter_token
    unk = data_args.unk
    pad = data_args.pad

    # 3. Next, let's load the config as we might need it to create
    # the tokenizer
    # load config
    config = AutoConfig.from_pretrained(
        model_args.model_name,
        cache_dir=model_args.cache_dir,
        use_auth_token=data_args.use_auth_token,
    )

    # 4. Next, if no tokenizer file is defined,
    # we create the vocabulary of the model by extracting all unique characters from
    # the training and evaluation datasets
    # We need to make sure that only first rank saves vocabulary
    # make sure all processes wait until vocab is created
    tokenizer_name_or_path = model_args.tokenizer_name_or_path
    tokenizer_kw = {}
    if tokenizer_name_or_path is None:
        # save vocab in training output dir
        tokenizer_name_or_path = training_args.out_dir

        vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")

        with training_args.main_process_first():
            if training_args.overwrite_out_dir and os.path.isfile(vocab_file):
                os.remove(vocab_file)

        with training_args.main_process_first(desc="dataset map vocabulary creation"):
            if not os.path.isfile(vocab_file):
                os.makedirs(tokenizer_name_or_path, exist_ok=True)
                vocab_dict = create_vocabulary_from_data(
                    raw_datasets,
                    word_delimiter_token=word_delimiter_token,
                    unk=unk,
                    pad=pad,
                )

                # save vocab dict to be loaded into tokenizer
                with open(vocab_file, "w") as file:
                    json.dump(vocab_dict, file)

        # if tokenizer has just been created
        # it is defined by `tokenizer_class` if present in config else by `model_type`
        tokenizer_kw = {
            "config": config if config.tokenizer_class is not None else None,
            "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
            "unk": unk,
            "pad": pad,
            "word_delimiter_token": word_delimiter_token,
        }

    tokenizer = AutoTokenizer.from_pretrained(
        tokenizer_name_or_path,
        use_auth_token=data_args.use_auth_token,
        **tokenizer_kw,
    )
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.model_name,
        cache_dir=model_args.cache_dir,
        use_auth_token=data_args.use_auth_token,
    )

    # adapt config
    config.update(
        {
            "feat_proj_dropout": model_args.feat_proj_dropout,
            "drop_attn": model_args.drop_attn,
            "drop": model_args.drop,
            "final_dropout": model_args.final_dropout,
            "mask_time_prob": model_args.mask_time_prob,
            "mask_time_length": model_args.mask_time_length,
            "mask_feature_prob": model_args.mask_feature_prob,
            "mask_feature_length": model_args.mask_feature_length,
            "grad_checkpoint": training_args.grad_checkpoint,
            "layerdrop": model_args.layerdrop,
            "ctc_loss_reduction": model_args.ctc_loss_reduction,
            "PAD": tokenizer.PAD,
            "s_vocab": len(tokenizer),
            "drop_act": model_args.drop_act,
        }
    )

    # create model
    model = AutoModelForCTC.from_pretrained(
        model_args.model_name,
        cache_dir=model_args.cache_dir,
        config=config,
        use_auth_token=data_args.use_auth_token,
    )

    # freeze encoder
    if model_args.freeze_feature_encoder:
        model.freeze_feature_encoder()

    # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
    # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
    # so that we just need to set the correct target sampling rate and normalize the input
    # via the `feature_extractor`

    # make sure that dataset decodes audio with correct sampling rate
    dataset_sampling_rate = (
        next(iter(raw_datasets.values())).features[data_args.audio_column].sampling_rate
    )
    if dataset_sampling_rate != feature_extractor.sampling_rate:
        raw_datasets = raw_datasets.cast_column(
            data_args.audio_column,
            datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate),
        )

    # derive max & min input length for sample rate & max duration
    max_input_length = data_args.max_duration * feature_extractor.sampling_rate
    min_input_length = data_args.min_duration * feature_extractor.sampling_rate
    audio_column = data_args.audio_column
    num_workers = data_args.num_workers

    # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
    phoneme_language = data_args.phoneme_language

    # Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    def prepare_dataset(batch):
        # load audio
        sample = batch[audio_column]

        inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
        batch["input_values"] = inputs.input_values[0]
        batch["input_length"] = len(batch["input_values"])

        # encode targets
        additional_kw = {}
        if phoneme_language is not None:
            additional_kw["phonemizer_lang"] = phoneme_language

        batch["labels"] = tokenizer(batch["target_text"], **additional_kw).input_ids
        return batch

    with training_args.main_process_first(desc="dataset map preprocessing"):
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            remove_columns=next(iter(raw_datasets.values())).column_names,
            num_proc=num_workers,
            desc="preprocess datasets",
        )

        def is_audio_in_length_range(length):
            return length > min_input_length and length < max_input_length

        # filter data that is shorter than min_input_length
        vectorized_datasets = vectorized_datasets.filter(
            is_audio_in_length_range,
            num_proc=num_workers,
            input_columns=["input_length"],
        )

    # 7. Next, we can prepare the training.
    # Let's use word error rate (WER) as our evaluation metric,
    # instantiate a data collator and the trainer

    # Define evaluation metrics during training, *i.e.* word error rate, character error rate
    eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with ``args.preprocessing_only`` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        logger.info(
            f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}"
        )
        return

    def compute_metrics(pred):
        pred_logits = pred.predictions
        pred_ids = np.argmax(pred_logits, axis=-1)

        pred.label_ids[pred.label_ids == -100] = tokenizer.PAD

        pred_str = tokenizer.batch_decode(pred_ids)
        # we do not want to group tokens when computing the metrics
        label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)

        metrics = {
            k: v.compute(predictions=pred_str, references=label_str)
            for k, v in eval_metrics.items()
        }

        return metrics

    # Now save everything to be able to create a single processor later
    if is_main_process(training_args.local_rank):
        # save feature extractor, tokenizer and config
        feature_extractor.save_pretrained(training_args.out_dir)
        tokenizer.save_pretrained(training_args.out_dir)
        config.save_pretrained(training_args.out_dir)

    try:
        processor = AutoProcessor.from_pretrained(training_args.out_dir)
    except (OSError, KeyError):
        warnings.warn(
            "Loading a processor from a feature extractor config that does not"
            " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
            " attribute to your `preprocessor_config.json` file to suppress this warning: "
            " `'processor_class': 'Wav2Vec2Processor'`",
            FutureWarning,
        )
        processor = Wav2Vec2Processor.from_pretrained(training_args.out_dir)

    # Instantiate custom data collator
    data_collator = DataCollatorCTCWithPadding(processor=processor)

    # Initialize Trainer
    trainer = Trainer(
        model=model,
        data_collator=data_collator,
        args=training_args,
        compute_metrics=compute_metrics,
        train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
        eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
        tokenizer=feature_extractor,
    )

    # 8. Finally, we can start training

    # Training
    if training_args.do_train:

        # use last checkpoint if exist
        if last_checkpoint is not None:
            checkpoint = last_checkpoint
        elif os.path.isdir(model_args.model_name):
            checkpoint = model_args.model_name
        else:
            checkpoint = None

        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()

        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples
            if data_args.max_train_samples is not None
            else len(vectorized_datasets["train"])
        )
        metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate()
        max_eval_samples = (
            data_args.max_eval_samples
            if data_args.max_eval_samples is not None
            else len(vectorized_datasets["eval"])
        )
        metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    config_name = data_args.dataset_config if data_args.dataset_config is not None else "na"
    kw = {
        "finetuned_from": model_args.model_name,
        "tasks": "speech-recognition",
        "tags": ["automatic-speech-recognition", data_args.dataset_name],
        "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
        "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
    }
    if "common_voice" in data_args.dataset_name:
        kw["language"] = config_name

    if training_args.push_to_hub:
        trainer.push_to_hub(**kw)
    else:
        trainer.create_model_card(**kw)

    return results
Beispiel #10
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # 1. First, let's load the dataset
    raw_datasets = DatasetDict()
    raw_datasets["train"] = load_dataset(data_args.dataset_name,
                                         data_args.dataset_config_name,
                                         split=data_args.train_split_name)
    raw_datasets["eval"] = load_dataset(data_args.dataset_name,
                                        data_args.dataset_config_name,
                                        split=data_args.eval_split_name)

    if data_args.audio_column_name not in raw_datasets["train"].column_names:
        raise ValueError(
            f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--audio_column_name` to the correct audio column - one of "
            f"{', '.join(raw_datasets['train'].column_names)}.")

    if data_args.text_column_name not in raw_datasets["train"].column_names:
        raise ValueError(
            f"--text_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--text_column_name` to the correct text column - one of "
            f"{', '.join(raw_datasets['train'].column_names)}.")

    # prepare dataset
    if data_args.max_train_samples is not None:
        raw_datasets["train"] = raw_datasets["train"].select(
            range(data_args.max_train_samples))

    if data_args.max_eval_samples is not None:
        raw_datasets["eval"] = raw_datasets["eval"].select(
            range(data_args.max_eval_samples))

    # 2. We remove some special characters from the datasets
    # that make training complicated and do not help in transcribing the speech
    # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
    # that could be easily picked up by the model

    chars_to_ignore_regex = (f'[{"".join(data_args.chars_to_ignore)}]' if
                             data_args.chars_to_ignore is not None else None)

    def remove_special_characters(batch):
        if chars_to_ignore_regex is not None:
            batch["target_text"] = re.sub(
                chars_to_ignore_regex, "",
                batch[data_args.text_column_name]).lower() + " "
        else:
            batch["target_text"] = batch[
                data_args.text_column_name].lower() + " "
        return batch

    with training_args.main_process_first(
            desc="dataset map special characters removal"):
        raw_datasets = raw_datasets.map(
            remove_special_characters,
            remove_columns=[data_args.text_column_name],
            desc="remove special characters from datasets",
        )

    # 3. Next, we create the vocabulary of the model by extracting all unique characters from
    # the training and evaluation datasets
    # We need to make sure that only first rank saves vocabulary
    # make sure all processes wait until vocab is created

    with training_args.main_process_first(
            desc="dataset map vocabulary creation"):
        vocab_dict = create_vocabulary_from_data(raw_datasets)

        vocab_file = os.path.join(training_args.output_dir, "vocab.json")

        # save vocab dict to be loaded into tokenizer
        os.makedirs(training_args.output_dir, exist_ok=True)
        if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
            os.remove(vocab_file)

        if not os.path.isfile(vocab_file):
            with open(vocab_file, "w") as vocab_file:
                json.dump(vocab_dict, vocab_file)

    # 4. Now we can instantiate the configuration, feature extractor, tokenizer and model
    # Note for distributed training, the .from_pretrained methods guarantee that only
    # one local process can concurrently download model & vocab.

    # load config
    config = AutoConfig.from_pretrained(model_args.model_name_or_path,
                                        cache_dir=model_args.cache_dir)

    # load feature_extractor, tokenizer and create processor
    tokenizer = AutoTokenizer.from_pretrained(
        training_args.output_dir,
        tokenizer_type=config.model_type,
        unk_token="[UNK]",
        pad_token="[PAD]",
        word_delimiter_token="|",
    )
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.model_name_or_path, cache_dir=model_args.cache_dir)
    processor = Wav2Vec2Processor(feature_extractor=feature_extractor,
                                  tokenizer=tokenizer)

    # adapt config
    config.update({
        "feat_proj_dropout": model_args.feat_proj_dropout,
        "attention_dropout": model_args.attention_dropout,
        "hidden_dropout": model_args.hidden_dropout,
        "final_dropout": model_args.final_dropout,
        "mask_time_prob": model_args.mask_time_prob,
        "gradient_checkpointing": training_args.gradient_checkpointing,
        "layerdrop": model_args.layerdrop,
        "ctc_loss_reduction": model_args.ctc_loss_reduction,
        "pad_token_id": processor.tokenizer.pad_token_id,
        "vocab_size": len(processor.tokenizer),
        "activation_dropout": model_args.activation_dropout,
    })

    # create model
    model = AutoModelForCTC.from_pretrained(model_args.model_name_or_path,
                                            cache_dir=model_args.cache_dir,
                                            config=config)

    # freeze encoder
    if model_args.freeze_feature_extractor:
        model.freeze_feature_extractor()

    # 5. Now we preprocess the datasets including loading the audio, resampling and normalization
    # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
    # so that we just need to set the correct target sampling rate and normalize the input
    # via the `feature_extractor`

    # make sure that dataset decodes audio with correct samlping rate
    raw_datasets = raw_datasets.cast_column(
        "audio",
        datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate))

    # derive max & min input length for sample rate & max duration
    max_input_length = data_args.max_duration_in_seconds * processor.feature_extractor.sampling_rate
    min_input_length = data_args.min_duration_in_seconds * processor.feature_extractor.sampling_rate

    # Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    def prepare_dataset(batch):
        # load audio
        sample = batch[data_args.audio_column_name]

        batch["input_values"] = processor(
            sample["array"],
            sampling_rate=sample["sampling_rate"],
            truncate=True,
            max_length=max_input_length).input_values[0]
        batch["input_length"] = len(batch["input_values"])

        # Setup the processor for targets
        with processor.as_target_processor():
            batch["labels"] = processor(batch["target_text"]).input_ids
        return batch

    with training_args.main_process_first(desc="dataset map preprocessing"):
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            remove_columns=raw_datasets["train"].column_names,
            num_proc=data_args.preprocessing_num_workers,
            desc="preprocess datasets",
        )

        if min_input_length > 0.0:
            # filter data that is shorter than min_input_length
            vectorized_datasets = vectorized_datasets.filter(
                lambda x: x > min_input_length,
                num_proc=data_args.preprocessing_num_workers,
                input_columns=["input_length"],
            )

        vectorized_datasets = vectorized_datasets.remove_columns(
            "input_length")

    # 6. Next, we can prepare the training.
    # Let's use word error rate (WER) as our evaluation metric,
    # instantiate a data collator and the trainer

    # Define Metric during training
    wer_metric = load_metric("wer")

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with ``args.preprocessing_only`` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        logger.info(
            f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}"
        )
        return

    def compute_metrics(pred):
        pred_logits = pred.predictions
        pred_ids = np.argmax(pred_logits, axis=-1)

        pred.label_ids[pred.label_ids ==
                       -100] = processor.tokenizer.pad_token_id

        pred_str = processor.batch_decode(pred_ids)
        # we do not want to group tokens when computing the metrics
        label_str = processor.batch_decode(pred.label_ids, group_tokens=False)

        wer = wer_metric.compute(predictions=pred_str, references=label_str)

        return {"wer": wer}

    # Instantiate custom data collator
    data_collator = DataCollatorCTCWithPadding(processor=processor)

    # Initialize Trainer
    trainer = Trainer(
        model=model,
        data_collator=data_collator,
        args=training_args,
        compute_metrics=compute_metrics,
        train_dataset=vectorized_datasets["train"]
        if training_args.do_train else None,
        eval_dataset=vectorized_datasets["eval"]
        if training_args.do_eval else None,
        tokenizer=processor.feature_extractor,
    )

    # 7. Finally, we can start training

    # Training
    if training_args.do_train:

        # use last checkpoint if exist
        if last_checkpoint is not None:
            checkpoint = last_checkpoint
        elif os.path.isdir(model_args.model_name_or_path):
            checkpoint = model_args.model_name_or_path
        else:
            checkpoint = None

        # Save the feature_extractor and the tokenizer
        if is_main_process(training_args.local_rank):
            processor.save_pretrained(training_args.output_dir)

        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()

        metrics = train_result.metrics
        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(vectorized_datasets["train"]))
        metrics["train_samples"] = min(max_train_samples,
                                       len(vectorized_datasets["train"]))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate()
        max_eval_samples = (data_args.max_eval_samples
                            if data_args.max_eval_samples is not None else len(
                                vectorized_datasets["eval"]))
        metrics["eval_samples"] = min(max_eval_samples,
                                      len(vectorized_datasets["eval"]))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from":
        model_args.model_name_or_path,
        "tasks":
        "speech-recognition",
        "tags": ["automatic-speech-recognition", data_args.dataset_name],
        "dataset_args":
        f"Config: {data_args.dataset_config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
        "dataset":
        f"{data_args.dataset_name.upper()} - {data_args.dataset_config_name.upper()}",
    }
    if "common_voice" in data_args.dataset_name:
        kwargs["language"] = data_args.dataset_config_name

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)

    return results