def show_residuals_over_trials(self, graph=None, ax=None, threshold=100):

        if graph is None:
            from datavyz import ges as graph
        if ax is None:
            # fig, ax = graph.figure(axes=(1,3), wspace=.2,
            #                        left=.7, bottom=.7, figsize=(.7,1.))
            fig, ax = graph.figure(left=.7, bottom=.7, figsize=(.7,1.))
        else:
            fig = None

        result = self.result
        if self.new_result is not None:
            RESULTS = [self.result, self.new_result]
        else:
            RESULTS = [self.result]
        for res in RESULTS:
            indices = np.argsort(res['residuals'])
            x = res['residuals'][indices]
            full_x = np.concatenate([np.arange(1, len(indices)+1)[x<=threshold],
                                     [len(indices)+1, res['Ntot']]])
            full_y = np.concatenate([x[x<=threshold], [threshold, threshold]])
            ax.plot(np.log10(full_x), np.log10(full_y), clip_on=False)

        graph.set_plot(ax,
                       # yticks=np.log10([1, 2, 5, 10, 20]),
                       # yticks_labels=['1', '2', '5', '10', '>20'],
                       # yminor_ticks=np.log10([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20]),
                       # ylim=[1, np.log10(threshold)],
                       xminor_ticks=np.log10(np.concatenate([[i*10**k for i in range(1,10)]\
                                                             for k in range(0,7)])),
                       xlim=[np.log10(result['Ntot']), -1.],
                       xticks=np.arange(7),
                       xticks_labels=['1','','','$10^3$','','','$10^6$'],
                       xlabel='config #',
                       ylabel=r'fit $\chi^2$ (norm.)       ', ylabelpad=-7)
        graph.annotate(ax, '4 pop. model', (.4, 1.2), ha='center')

        return fig, ax
        # ge.title(AX[i], "a=%.2f, k=%.2f, $\gamma$=%.2f" % (residual.x[0], residual.x[1], residual.x[2]), color=getattr(ge, color), size='small')
        ge.title(AX[i],
                 "k=%.2f, $\gamma$=%.2f" % (residual.x[0], residual.x[1]),
                 color=getattr(ge, color),
                 size='small')
        ge.scatter(lum,
                   array,
                   ax=AX[i],
                   color=getattr(ge, color),
                   label='data',
                   ms=3)
        ge.plot(lum,
                func(lum, residual.x),
                ax=AX[i],
                lw=3,
                alpha=.5,
                color=getattr(ge, color),
                label='fit')
        ge.annotate(AX[i],
                    '$\lambda$=%s' % LAMBDA[color], (0.5, .1),
                    color=getattr(ge, color))
        ge.set_plot(AX[i],
                    xlabel='(computer) luminosity',
                    xticks=[0, 0.5, 1],
                    yticks=[0, 0.5, 1],
                    ylabel='measured I (norm.)')

        fig.savefig('doc/gamma-correction-%s.png' % correc)
ge.show()
Beispiel #3
0
    fig1, ax, _ = matrix(ge,
                         z,
                         aspect='equal',
                         xlabel='x-label (X)',
                         ylabel='y-label (Y)')

    x, y, z = np.array(x).flatten(),\
              np.array(y).flatten(),\
              np.array(z).flatten()*np.random.randn(len(z.flatten()))
    index = (x < 15) & (y < x)
    # np.random.shuffle(index)
    x, y, z = x[index], y[index], z[index]

    fig2, ax, acb = twoD_plot(ge,
                              x,
                              y,
                              z,
                              vmin=-7,
                              vmax=7,
                              bar_legend_args={
                                  'label': 'color',
                                  'ticks': [-7, 0, 7],
                                  'ticks_labels': ['-7', '0', '>7'],
                                  'color_discretization': 20
                              })
    ge.set_plot(ax, xlabel='x-label (X)', ylabel='y-label (Y)')

    fig2.savefig('docs/surface-plot.png')

    ge.show()
    from analyz.IO.npz import load_dict
    from datavyz import ges as ge
    
    data = load_dict('data.npz')

    fig, AX = ge.figure(axes=(1,3), figsize=(2.,1.))
    ge.plot(data['t'], Y=[data['Vsoma'], data['Vdend']],
            LABELS=['soma', 'dend'], COLORS=['k', ge.blue], ax=AX[0],
            axes_args={'ylabel':'Vm (mV)', 'xlim':[0, data['t'][-1]]})
    ge.plot(data['t'], Y=[data['Casoma'], data['Cadend']],
            COLORS=['k', ge.blue], ax=AX[1],
            axes_args={'ylabel':'[Ca$^{2+}$] (nM)', 'xlabel':'time (ms)', 'xlim':[0, data['t'][-1]]})
    ge.scatter(data['Espike_times'], data['Espike_IDs'], color=ge.green,ax=AX[2],no_set=True,ms=3)
    ge.scatter(data['Ispike_times'], data['Espike_IDs'].max()*1.2+data['Ispike_IDs'], color=ge.red,
               ax=AX[2], no_set=True, ms=3)
    ge.set_plot(AX[2], [], xlim=[0, data['t'][-1]])
    fig.savefig('/home/yann/Desktop/trace.svg')
    ge.show()

else:
    
    nrn.defaultclock.dt = 0.025*nrn.ms

    # calcium dynamics following: HighVoltageActivationCalciumCurrent + LowThresholdCalciumCurrent
    # Equation_String = nrn.CalciumConcentrationDynamics(contributing_currents='0*mA/cm**2',
    Equation_String = nrn.CalciumConcentrationDynamics(contributing_currents='IHVACa+IT',
                                             name='CaDynamics').insert(nrn.Equation_String)
    
    # intrinsic currents
    CURRENTS = [nrn.PassiveCurrent(name='Pas'),
                nrn.PotassiumChannelCurrent(name='K'),
Beispiel #5
0
    return data


if __name__ == '__main__':

    import sys
    if len(sys.argv) > 1:
        fn = sys.argv[1]
    else:
        fn = '/home/yann/DATA/2020_09_11/13-40-10/pupil-data.npy'

    from datavyz import ges as ge

    data = np.load(fn, allow_pickle=True).item()

    fig, AX = ge.figure(axes=(1, 6), figsize=(3, 1), hspace=0.1)

    for i, key in enumerate(['cx', 'cy', 'sx', 'sy', 'residual']):
        AX[i].plot(data['times'], data[key], label='fit')

    data = replace_outliers(data)

    for i, key in enumerate(['cx', 'cy', 'sx', 'sy', 'residual']):
        AX[i].plot(data['times'], data[key + '-corrected'], label='corrected')
        ge.set_plot(AX[i],
                    xlim=[data['times'][0], data['times'][-1]],
                    ylabel=key)

    ge.show()
Beispiel #6
0
                                figsize=(.7, 1),
                                right=4.,
                                hspace=0.1,
                                bottom=0.1)
            ge.title(AX[0],
                     '%i to %i synapses (by 2)' % (N_PULSES[0], N_PULSES[-1]))
            for synapses_loc, label, ax in zip([PROX, DIST], ['prox', 'dist'],
                                               AX):
                for i in range(len(data['v-%s' % label])):
                    ax.plot(data['t'],
                            data['v-%s' % label][i],
                            label=label,
                            color='k',
                            lw=1)

                ge.set_plot(ax, [], ylim=[-76, -45], xlim=[0, tstop])
                ge.draw_bar_scales(ax,
                                   Xbar=50.,
                                   Xbar_label='50ms',
                                   Ybar=5.,
                                   Ybar_label='5mV',
                                   loc='top-right')
            ge.show()

        else:

            from single_cell_sim import *
            if args.chelated_zinc:
                Model['Deltax0'] = 0.  # removing Zinc modulation !!

            data = {'t': [], 'v-prox': [], 'v-dist': []}
Beispiel #7
0
    #               axes_args={'spines':['left', 'bottom'], 'xlabel':'my-x value', 'ylabel':'my-y value'})
    # save_on_desktop(fig, figname='2.svg')
    # show()

    # mg = graphs('ggplot_npotebook')
    # mg = graphs()
    # mg.hist(np.random.randn(100), xlabel='ksjdfh')

    from datavyz import ges as ge

    # ge.boxplot(np.exp(np.random.randn(100)),
    #            axes_args=dict(xticks=[1],
    #                           xticks_labels=['data']))

    fig_lf, AX = ge.figure(axes_extents=[[[3, 1]], [[1, 2], [1, 2], [1, 2]]],
                           figsize=(1., .5),
                           wspace=3.,
                           hspace=2.)
    for ax in [item for sublist in AX for item in sublist]:
        ge.top_left_letter(ax, 'a')
    # _, ax, _ = ge.figure(with_bar_legend=True)
    AX[1][0].hist(np.random.randn(100))
    fig, ax = ge.figure()
    ax.hist(np.random.randn(100))
    ge.panel_label(ax, 'a')
    ge.annotate(ax, 'blabla', (0.7, 0.8), italic=True)
    ge.set_plot(ax)
    ge.show()

    ge.show()