Beispiel #1
0
def db_add_data(table_name, data_list, sw_list=set()):
    command = {
        'switches': 'insert into switches (hostname, location) values (?, ?)',
        'dhcp': 'replace into dhcp values (?, ?, ?, ?, ?, ?, ?)'
    }
    con = sq.connect('dhcp_snooping.db')
    print('Добавляю данные в таблицу {}...'.format(table_name))
    with con:
        if sw_list != set():
            for sw in sw_list:
                con.execute(
                    'update {} set active = 0 where switch = \'{}\''.format(
                        table_name, sw))
            week_ago = da.today().replace(microsecond=0) - ti(days=7)
            for l in con.execute('select * from dhcp where active=0'):
                mac = l[0]
                if da.strptime(l[6], '%Y-%m-%d %H:%M:%S') < week_ago:
                    con.execute(
                        'delete from dhcp where mac=\'{}\''.format(mac))
        for r in data_list:
            try:
                if table_name == 'dhcp':
                    con.execute(
                        command[table_name],
                        tuple(
                            list(r) + [
                                1, '{0:%Y}-{0:%m}-{0:%d} {0:%H}:{0:%M}:{0:%S}'.
                                format(da.now())
                            ]))
                else:
                    con.execute(command[table_name], r)
            except sq.IntegrityError as e:
                print('При добавлении данных: {} Возникла ошибка: {}'.format(
                    r, e))
Beispiel #2
0
class CrimeReport(ServiceBase):
    @srpc(String, String, String, _returns=Iterable(String))
    def checkcrime(lat, lon, radius):
        res = urllib.urlopen('https://api.spotcrime.com/crimes.json?lat=' +
                             lat + '&lon=' + lon + '&radius=' + radius +
                             '&key=.')
        #res = urlib.urlopen('https://api.spotcrime.com/crimes.json?lat=37.334164&lon=-121.884301&radius=0.02&key=.')
        crimedata = json.loads(res.read())
        address_dict = {}
        dict = {
            "total_crime": 0,
            "the_most_dangerous_streets": 0,
            "crime_type_count": {
                "Assault": 0,
                "Arrest": 0,
                "Burglary": 0,
                "Robbery": 0,
                "Theft": 0,
                "Other": 0
            },
            "event_time_count": {
                "12:01am-3am": 0,
                "3:01am-6am": 0,
                "6:01am-9am": 0,
                "9:01am-12noon": 0,
                "12:01pm-3pm": 0,
                "3:01pm-6pm": 0,
                "6:01pm-9pm": 0,
                "9:01pm-12midnight": 0
            }
        }
        dict["total_crime"] = len(crimedata['crimes'])

        for each in crimedata['crimes']:
            if each.get('type') == "Assault":
                dict["crime_type_count"]["Assault"] += 1
            elif each.get('type') == "Arrest":
                dict["crime_type_count"]["Arrest"] += 1
            elif each.get('type') == "Burglary":
                dict["crime_type_count"]["Burglary"] += 1
            elif each.get('type') == "Robbery":
                dict["crime_type_count"]["Robbery"] += 1
            elif each.get('type') == "Theft":
                dict["crime_type_count"]["Theft"] += 1
            elif each.get('type') == "Other":
                dict["crime_type_count"]["Other"] += 1

            timedate = each.get('date')[9:]
            t1 = datetime.strptime(timedate, "%I:%M %p")
            crimet = t1.time()
            if crimet >= ti(00, 01, 00) and crimet <= ti(03, 00, 00):
                dict["event_time_count"]["12:01am-3am"] += 1
            elif crimet >= ti(03, 01, 00) and crimet <= ti(06, 00, 00):
                dict["event_time_count"]["3:01am-6am"] += 1
            elif crimet >= ti(06, 01, 00) and crimet <= ti(9, 00, 00):
                dict["event_time_count"]["6:01am-9am"] += 1
Beispiel #3
0
    if begin_time < end_time:
        return check_time >= begin_time and check_time <= end_time
    else:  # crosses midnight
        return check_time >= begin_time or check_time <= end_time


location = "Barron.xlsx"  #location of excel file
wb = xlrd.open_workbook(location)  #opens the excel file
no_of_sheets = 23
notify = Notify()  #used for notification in phones
checkDict = defaultdict(int)
toRepeatList = []

count = 0  # send 40 words only
while (1):
    if (is_time_between(ti(10, 00),
                        ti(20, 30))):  #runs only between 10am to 8:30  pm
        randSheet = random.randint(0, 21)
        print('sheet', randSheet)  #gets a random sheet number
        sheet = wb.sheet_by_index(randSheet)
        randRow = random.randint(2, sheet.nrows -
                                 1)  #gets a random row number (random word)
        print('row', randRow)
        randText = str(randSheet) + str(randRow)
        if (count == 40
            ):  #done with words for the day, just print again from list
            print("Time for revision now")
            notify.send(
                "Time to revise those 40 words now~~. Will begin in 5 minutes")
            time.sleep(300)
            for i in range(len(toRepeatList)):
Beispiel #4
0
#    def __cmp__(self, other):
#        return cmp(self.id, self.id)
    
    def __repr__(self):
        return self.fact.activity

    def get_text(self, fact):
        text = ""
        if fact.description:
            text += ": %s" % (fact.description)
        if fact.tags:
            text += " ("+", ".join(fact.tags)+")"
        return text

d = date(2005, 7, 14)
t = ti(12, 30)


facts = list([\
         Fact(activity = "#123: 1", category = "category", description = "description", id=1), \
         Fact(activity = "#123: 2", category = "category", description = "description", id=2), \
         Fact(activity = "#222: 3", category = "category", description = "description", id=6), \
         Fact(activity = "#123: 4", category = "category", description = "description", id=3), \
         Fact(activity = "#222: 5", category = "category", description = "description", id=7), \
         Fact(activity = "#123: 6", category = "category", description = "description", id=4), \
         Fact(activity = "#123: 7", category = "category", description = "description", id=5), \
        ])
rows = [ExportRow(fact) for fact in facts]

tickets = {}
for ticket, group in groupby(rows, lambda export_row: export_row.id):
Beispiel #5
0
def actogram(template_filename, n_pir, bin_display):
    from datetime import time as ti
    import pandas as pd
    import matplotlib.pyplot as plt
    import math

    template_filename = template_filename + "_parsed.txt"

    nlin = round(math.sqrt(n_pir))
    ncol = math.ceil(math.sqrt(n_pir))
    fig, ax = plt.subplots(nlin,ncol,sharex='all',sharey='all')

    for n in range(n_pir):
        ls_ts=list()
        ls_stat = list()
        PIR_dataframe = None
        try:
            with open(template_filename%(n+1),'r') as f:
                f.readline()
                while True:
                    tmp=f.readline()
                    if tmp=='':
                        break
                    tmp=[float(x) for x in tmp.strip().split(',')]
                    ls_ts.append(datetime.fromtimestamp(int(tmp[0])))
                    ls_stat.append(tmp[1])
                PIR_dataframe = pd.DataFrame({'Status':ls_stat}, index=ls_ts)

        except ValueError:
            # The date is already converted
            PIR_dataframe = pd.read_csv(template_filename%(n+1),index_col='time', parse_dates=True)

        binsize = (PIR_dataframe.index[1]-PIR_dataframe.index[0]).seconds/3600

        # resample data in x-minute bins to avoid heavy figures
        if bin_display:
            print('binning data in %i-minute bins'%bin_display)
            PIR_dataframe = PIR_dataframe.resample('%iT'%bin_display).mean()
            binsize = (PIR_dataframe.index[1]-PIR_dataframe.index[0]).seconds/3600

        days_array = pd.date_range(PIR_dataframe.index[0].date(), PIR_dataframe.index[-1].date()+timedelta(days=1))

        n_days=len(days_array)-1
        k=n_days

        lin = math.floor((n)/ncol)
        col = (n)%ncol

        for i in range(n_days):
            idx = numpy.logical_and(PIR_dataframe.index < datetime.combine(days_array[i+1], ti(0,0,0)),
                                    PIR_dataframe.index >= datetime.combine(days_array[i], ti(0,0,0)))
            x = PIR_dataframe.index[idx]
            x = x.hour+x.minute/60+x.second/3600
            y = PIR_dataframe.Status.iloc[idx] * 0.9
            # y = numpy.ones((len(x),)) * (k-1)
            # u = numpy.zeros((len(x),))
            # v = PIR_dataframe.Status.iloc[idx]
            if nlin>1:
                # ax[lin,col].quiver(x, y, u, v,
                # headwidth=0, angles='xy', scale_units='xy', scale=1)
                # ax[lin,col].quiver(x+24, y+1, u, v,
                # headwidth=0, angles='xy', scale_units='xy', scale=1)
                # ax[lin,col].plot([0,48], [k-1,k-1], color='black')
                ax[lin,col].fill_between(x, k-1, y+k-1, where=y+k>k, color='black', edgecolor='none')
                ax[lin,col].fill_between(x+24, k, y+k, where=y+k>k,  color='black', edgecolor='none')
                ax[lin,col].plot([0,48], [k-1,k-1], color='black')
            else:
                # ax[lin].quiver(x, y, u, v,
                # headwidth=0, angles='xy', scale_units='xy', scale=1)
                # ax[lin].quiver(x+24, y+1, u, v,
                # headwidth=0, angles='xy', scale_units='xy', scale=1)
                # ax[lin].plot([0,48], [k-1,k-1], color='black')
                ax[col].fill_between(x, k-1, y+k-1, where=y+k>k, color='black', edgecolor='none')
                ax[col].fill_between(x+24, k, y+k, where=y+k>k,  color='black', edgecolor='none')
                ax[col].plot([0,48], [k-1,k-1], color='black')
            k-=1

        if nlin>1:
            ax[lin,col].set_title(template_filename%(n+1))
        else:
            ax[col].set_title(template_filename%(n+1))

    plt.xticks(range(0, 48, 6),
               ['00:00', '06:00', '12:00', '18:00', '00:00', '06:00', '12:00', '18:00'])
    plt.yticks(numpy.arange(0.5,n_days,1), reversed(days_array[0:-1].strftime("%a %d-%m")))
    plt.ylim(ymax=n_days)
    plt.xlim(xmin=0,xmax=48)
    plt.show()
    plt.savefig(template_filename + '.png')
Beispiel #6
0
                dict["crime_type_count"]["Robbery"] += 1
            elif each.get('type') == "Theft":
                dict["crime_type_count"]["Theft"] += 1
            elif each.get('type') == "Other":
                dict["crime_type_count"]["Other"] += 1

            timedate = each.get('date')[9:]
            t1 = datetime.strptime(timedate, "%I:%M %p")
            crimet = t1.time()
            if crimet >= ti(00, 01, 00) and crimet <= ti(03, 00, 00):
                dict["event_time_count"]["12:01am-3am"] += 1
            elif crimet >= ti(03, 01, 00) and crimet <= ti(06, 00, 00):
                dict["event_time_count"]["3:01am-6am"] += 1
            elif crimet >= ti(06, 01, 00) and crimet <= ti(9, 00, 00):
                dict["event_time_count"]["6:01am-9am"] += 1
            elif crimet >= ti(9, 01, 00) and crimet <= ti(12, 00, 00):
                dict["event_time_count"]["9:01am-12noon"] += 1
            elif crimet >= ti(12, 01, 00) and crimet <= ti(15, 00, 00):
                dict["event_time_count"]["12:01pm-3pm"] += 1
            elif crimet >= ti(15, 01, 00) and crimet <= ti(18, 00, 00):
                dict["event_time_count"]["3:01pm-6pm"] += 1
            elif crimet >= ti(18, 01, 00) and crimet <= ti(21, 00, 00):
                dict["event_time_count"]["6:01pm-9pm"] += 1
            elif crimet >= ti(21, 01, 00) and crimet < ti(
                    00, 00, 00) or crimet == ti(00, 00, 00):
                dict["event_time_count"]["9:01pm-12midnight"] += 1

            address = each.get('address')
            ad = ''
            if 'OF' in address:
                ad = address.split('OF')