def main(): X1, X2, Y = davis_data.load_davis() Y = Y.ravel(order='F') learner = KronRLS(X1 = X1, X2 = X2, Y = Y) log_regparams = range(15, 35) for log_regparam in log_regparams: learner.solve(2.**log_regparam) P = learner.in_sample_loo() perf = cindex(Y, P) print("regparam 2**%d, cindex %f" %(log_regparam, perf))
def main(): X1, X2, Y = davis_data.load_davis() Y = Y.ravel(order='F') learner = TwoStepRLS(X1 = X1, X2 = X2, Y = Y, regparam1=1.0, regparam2=1.0) log_regparams1 = range(-8, -4) log_regparams2 = range(20,25) for log_regparam1 in log_regparams1: for log_regparam2 in log_regparams2: learner.solve(2.**log_regparam1, 2.**log_regparam2) P = learner.in_sample_loo() perf = cindex(Y, P) print("regparam 2**%d 2**%d, cindex %f" %(log_regparam1, log_regparam2, perf))
def main(): X1, X2, Y = davis_data.load_davis() Y = Y.ravel(order='F') learner = TwoStepRLS(X1=X1, X2=X2, Y=Y, regparam1=1.0, regparam2=1.0) log_regparams1 = range(-8, -4) log_regparams2 = range(20, 25) for log_regparam1 in log_regparams1: for log_regparam2 in log_regparams2: learner.solve(2.**log_regparam1, 2.**log_regparam2) P = learner.in_sample_loo() perf = cindex(Y, P) print("regparam 2**%d 2**%d, cindex %f" % (log_regparam1, log_regparam2, perf))
def main(): X1, X2, Y = davis_data.load_davis() n = X1.shape[0] m = X2.shape[0] Y = Y.ravel(order='F') learner = TwoStepRLS(X1 = X1, X2 = X2, Y = Y, regparam1=1.0, regparam2=1.0) log_regparams1 = range(-8, -4) log_regparams2 = range(20,25) #Create random split to 5 folds for the drug-target pairs folds = random_folds(n*m, 5, seed=12345) #Map the indices back to (drug_indices, target_indices) folds = [np.unravel_index(fold, (n,m)) for fold in folds] for log_regparam1 in log_regparams1: for log_regparam2 in log_regparams2: learner.solve(2.**log_regparam1, 2.**log_regparam2) P = learner.in_sample_kfoldcv(folds) perf = cindex(Y, P) print("regparam 2**%d 2**%d, cindex %f" %(log_regparam1, log_regparam2, perf))
def main(): X1, X2, Y = davis_data.load_davis() n = X1.shape[0] m = X2.shape[0] Y = Y.ravel(order='F') learner = TwoStepRLS(X1=X1, X2=X2, Y=Y, regparam1=1.0, regparam2=1.0) log_regparams1 = range(-8, -4) log_regparams2 = range(20, 25) #Create random split to 5 folds for the drug-target pairs folds = random_folds(n * m, 5, seed=12345) #Map the indices back to (drug_indices, target_indices) folds = [np.unravel_index(fold, (n, m)) for fold in folds] for log_regparam1 in log_regparams1: for log_regparam2 in log_regparams2: learner.solve(2.**log_regparam1, 2.**log_regparam2) P = learner.in_sample_kfoldcv(folds) perf = cindex(Y, P) print("regparam 2**%d 2**%d, cindex %f" % (log_regparam1, log_regparam2, perf))