Beispiel #1
0
#print('x_test number: ', X_test.shape[0])
#print('Y_train number: ', Y.shape[0])
#print('y_test number: ', Y_test)

regressor = SupervisedDBNRegression(hidden_layers_structure=[100],
                                    learning_rate_rbm=0.01,
                                    learning_rate=0.01,
                                    n_epochs_rbm=10,
                                    n_iter_backprop=100,
                                    batch_size=16,
                                    activation_function='relu')

regressor.fit(X, Y)

# Save the model
regressor.save('models/abalone_3.pkl')

# Restore it
#regressor = SupervisedDBNRegression.load('models/abalone_2.pkl')

# Test
data1 = pd.read_csv("abalone_test.csv")

data1['age'] = data1['rings'] + 1.5
data1.drop('rings', axis=1, inplace=True)

X1 = data1.drop(['age', 'sex'], axis=1)
Y1 = data1['age']

X1 = min_max_scaler.fit_transform(X1)
Beispiel #2
0
#print('X: ', X.shape[1])
#print('Y: ', Y)
#print('Y_train number: ', Y_train[0])
#print('y_test number: ', Y_test.shape[0])

#'''

# Training
regressor = SupervisedDBNRegression(hidden_layers_structure=[10, 100],
                                    learning_rate_rbm=0.01,
                                    learning_rate=0.01,
                                    n_epochs_rbm=20,
                                    n_iter_backprop=100,
                                    batch_size=16,
                                    activation_function='relu')
regressor.fit(X_train, Y_train)

# Save the model
regressor.save('models/taipei_data.pkl')

# Restore it
#regressor = SupervisedDBNRegression.load('models/model_regression.pkl')

# Test
X_test = min_max_scaler.transform(X_test)
Y_pred = regressor.predict(X_test)
print('Done.\nR-squared: %f\nMSE: %f\nMAPE: %f' %
      (r2_score(Y_test, Y_pred), mean_squared_error(
          Y_test, Y_pred), mean_absolute_percentage_error(Y_test, Y_pred)))

#'''