Beispiel #1
0
def create_bond_dataframe(periods_range=10):
    data = pd.read_csv('./data/kezhuanzhai.csv', index_col=0)
    result_data = data.copy()
    calender = pd.read_csv('./data/calender.csv', converters={'cal_date': str})
    forecast_strategy.end_date = '20201231'
    for index, item in data.iterrows():
        _, ndate = forecast_strategy.find_buy_day(item.CBSTOCKCODE,
                                                  item.CBIPOANNCDATE, 0,
                                                  calender)
        df_ndate = db.get_k_data(item.CBSTOCKCODE, ndate.replace('-', '', 2),
                                 ndate.replace('-', '', 2))
        if len(df_ndate) > 0:
            result_data.loc[index, 'ndate_open'] = df_ndate.open.values[0]
            result_data.loc[index, 'ndate_close'] = df_ndate.close.values[0]
            result_data.loc[index,
                            'ndate_pct_chg'] = df_ndate.pct_chg.values[0]
            result_data.loc[index,
                            'ndate_date'] = df_ndate.trade_date.values[0]
        for i in range(1, periods_range + 1):
            is_exist, trade_date = forecast_strategy.find_buy_day(
                item.CBSTOCKCODE, item.CBIPOANNCDATE, i, calender)
            if is_exist:
                dataframe = db.get_k_data(item.CBSTOCKCODE,
                                          trade_date.replace('-', '', 2),
                                          trade_date.replace('-', '', 2))
                if len(df_ndate) > 0:
                    result_data.loc[
                        index, f'date{str(i)}_open'] = dataframe.open.values[0]
                    result_data.loc[
                        index,
                        f'date{str(i)}_close'] = dataframe.close.values[0]
                    result_data.loc[
                        index,
                        f'date{str(i)}_pct_chg'] = dataframe.pct_chg.values[0]
                    result_data.loc[
                        index,
                        f'date{str(i)}_date'] = dataframe.trade_date.values[0]
            else:
                if trade_date is not None:
                    result_data.loc[index,
                                    f'date{str(i)}_date'] = trade_date.replace(
                                        '-', '', 2)
        if pd.isnull(item.CBLISTDATE):
            continue
        try:
            dflist = db.get_k_data(item.CBSTOCKCODE,
                                   item.CBLISTDATE.replace('-', '', 2),
                                   item.CBLISTDATE.replace('-', '', 2))
        except:
            continue
        if len(dflist) == 0:
            continue
        result_data.loc[index, 'list_open'] = dflist.open.values[0]
        result_data.loc[index, 'list_close'] = dflist.close.values[0]
        result_data.loc[index, 'list_pct_chg'] = dflist.pct_chg.values[0]
        result_data.loc[index, 'list_date'] = dflist.trade_date.values[0]

    result_data.to_csv('./data/convertible-bond.csv')
    return result_data
Beispiel #2
0
def get_dt_data(code, start, end):
    global dt_data
    global ts_count
    start = tran_dateformat(start)
    end = tran_dateformat(end)
    dt = dt_data[(dt_data['ts_code'] == code)
                 & (dt_data['start_to_end'] == (start + end))]
    if len(dt) == 0:
        try:
            dt = get_k_data(code, start.replace('-', '', 3),
                            end.replace('-', '', 3))
        except:
            time.sleep(40)
            dt = get_dt_data(code, start, end)
            pass

        if dt is None:
            return dt
        if len(dt) == 0:
            return dt
        dt['start_to_end'] = start + end
        ts_count += 1
        dt_data = dt_data.append(dt)

    return dt
Beispiel #3
0
def getDatas(ts_code, begindate, enddate, *args, **kwargs):
    begindate = begindate.strftime('%Y%m%d')
    enddate = enddate.strftime('%Y%m%d')
    ds_df = db2df.get_k_data(ts_code, begindate, enddate)
    ds_df.index = pd.to_datetime(ds_df.trade_date)
    ds_df = ds_df[['open', 'high', 'low', 'close', 'vol']]
    return ds_df
def get_dt_data(code, start, end):
    dt = get_k_data(code, start.replace('-', '', 3), end.replace('-', '', 3))
    if dt is None:
        return dt
    if len(dt) == 0:
        return dt

    return dt
Beispiel #5
0
def get_dt_data(code, start, end):
    global dt_data
    start = tran_dateformat(start.replace('-', '', 3))
    end = tran_dateformat(end.replace('-', '', 3))
    dt = dt_data[(dt_data['ts_code'] == code) & (dt_data['start_to_end'] == (start + end))]
    if len(dt) == 0:
        dt = get_k_data(code, start.replace('-', '', 3), end.replace('-', '', 3))
        if dt is None:
            return dt
        if len(dt) == 0:
            return dt
        dt['start_to_end'] = start + end
        dt_data = dt_data.append(dt)
    return dt
Beispiel #6
0
def get_basic_info(code, start, end):
    global basic_info
    try:
        start = tran_dateformat(start).replace('-', '', 3)
    except:
        print('aaaa', code, start, end)
        pass
    end = tran_dateformat(end).replace('-', '', 3)
    df = basic_info[(basic_info['ts_code'] == code)
                    & (basic_info['start_to_end'] == pd.to_numeric(start + end)
                       )].drop_duplicates('trade_date')
    if df is None or len(df) == 0:
        # df = pro.daily_basic(ts_code=code, start_date=start, end_date=end,
        #                      fields='ts_code,close,trade_date,turnover_rate_f,volume_ratio,pe_ttm,circ_mv')
        df = get_k_data(code, start, end)
        if df is None or len(df) == 0:
            return None
        df['start_to_end'] = start + end
        basic_info = basic_info.append(df)
    df = df.reset_index().drop(columns='index')
    return df
    dt = get_k_data(code, start.replace('-', '', 3), end.replace('-', '', 3))
    if dt is None:
        return dt
    if len(dt) == 0:
        return dt

    return dt


st_path = './data/st_stock.csv'
stock_info_path = './data/stock_basic_info.csv'
loan_path = './data/rongquanall.csv'
dt_data = pd.read_csv('./data/dt_data.csv')
check_trade_condition = CheckTradeCondition(st_path, stock_info_path, loan_path, buy='open', sell='close',
                                            long_short='long')
high_limit_open = get_k_data('002684.SZ', '20201103', '20201103')  # st股票,一字涨停 5%
high_limit_close = get_k_data('300670.SZ', '20201103', '20201103')  # 收盘涨停
low_limit_open = get_k_data('002496.SZ', '20201103', '20201103')  # st 股票,一字跌停 -5%
low_limit_close = get_k_data('600225.SH', '20201103', '20201103')  # st 股票,收盘跌停 -5%


engine = create_engine('mysql+pymysql://root:myh123@localhost:3306/quant?charset=utf8',pool_recycle=1)


def get_k_data(ts_code, start, end) -> pd.DataFrame:
    global engine
    sql = "SELECT * FROM quant.stock_daily where ts_code ='" + ts_code + "' and trade_date between '" + start + "' and '" + end + "'"
    return pd.read_sql(sql, engine)

class TestCheckTradeCondition(TestCase):