Beispiel #1
0
 def __init__(self, n_hidden=100, init='glorot_uniform'):
   self.n_hidden = n_hidden
   self.init = initializations.get(init)
   Wz = self.init([n_hidden, n_hidden])
   Wr = self.init([n_hidden, n_hidden])
   Wh = self.init([n_hidden, n_hidden])
   Uz = self.init([n_hidden, n_hidden])
   Ur = self.init([n_hidden, n_hidden])
   Uh = self.init([n_hidden, n_hidden])
   bz = model_ops.zeros(shape=(n_hidden,))
   br = model_ops.zeros(shape=(n_hidden,))
   bh = model_ops.zeros(shape=(n_hidden,))
   self.trainable_weights = [Wz, Wr, Wh, Uz, Ur, Uh, bz, br, bh]
Beispiel #2
0
  def build(self):
    self.W_cf = self.init([self.n_embedding, self.n_hidden])
    self.W_df = self.init([self.n_distance, self.n_hidden])
    self.W_fc = self.init([self.n_hidden, self.n_embedding])
    self.b_cf = model_ops.zeros(shape=[
        self.n_hidden,
    ])
    self.b_df = model_ops.zeros(shape=[
        self.n_hidden,
    ])

    self.trainable_weights = [
        self.W_cf, self.W_df, self.W_fc, self.b_cf, self.b_df
    ]
Beispiel #3
0
  def build(self):
    self.W_list = []
    self.b_list = []
    prev_layer_size = self.n_embedding
    for i, layer_size in enumerate(self.layer_sizes):
      self.W_list.append(self.init([prev_layer_size, layer_size]))
      self.b_list.append(model_ops.zeros(shape=[
          layer_size,
      ]))
      prev_layer_size = layer_size
    self.W_list.append(self.init([prev_layer_size, self.n_outputs]))
    self.b_list.append(model_ops.zeros(shape=[
        self.n_outputs,
    ]))
    prev_layer_size = self.n_outputs

    self.trainable_weights = self.W_list + self.b_list
Beispiel #4
0
 def build(self):
   if self.gaussian_expand:
     self.W = self.init([self.n_input * 11, self.n_input])
     self.b = model_ops.zeros(shape=[
         self.n_input,
     ])
     self.trainable_weights = self.W + self.b
   else:
     self.trainable_weights = None
Beispiel #5
0
  def build(self):
    """"Construct internal trainable weights.
        """

    self.W_list = []
    self.b_list = []
    prev_layer_size = self.n_graph_feat
    for layer_size in self.layer_sizes:
      self.W_list.append(self.init([prev_layer_size, layer_size]))
      self.b_list.append(model_ops.zeros(shape=[
          layer_size,
      ]))
      prev_layer_size = layer_size
    self.W_list.append(self.init([prev_layer_size, self.n_outputs]))
    self.b_list.append(model_ops.zeros(shape=[
        self.n_outputs,
    ]))

    self.trainable_weights = self.W_list + self.b_list
Beispiel #6
0
 def __init__(self,
              pair_features,
              n_pair_features=8,
              n_hidden=100,
              init='glorot_uniform'):
   self.n_pair_features = n_pair_features
   self.n_hidden = n_hidden
   self.init = initializations.get(init)
   W = self.init([n_pair_features, n_hidden * n_hidden])
   b = model_ops.zeros(shape=(n_hidden * n_hidden,))
   self.A = tf.nn.xw_plus_b(pair_features, W, b)
   self.A = tf.reshape(self.A, (-1, n_hidden, n_hidden))
   self.trainable_weights = [W, b]
Beispiel #7
0
  def build(self):
    """ Construct internal trainable weights.

        TODO(rbharath): Need to make this not set instance variables to
        follow style in other layers.
        """
    init = initializations.get(self.init) # Set weight initialization
    self.W_AA = init([self.n_atom_input_feat, self.n_hidden_AA])
    self.b_AA = model_ops.zeros(shape=[
        self.n_hidden_AA,
    ])

    self.W_PA = init([self.n_pair_input_feat, self.n_hidden_PA])
    self.b_PA = model_ops.zeros(shape=[
        self.n_hidden_PA,
    ])

    self.W_A = init([self.n_hidden_A, self.n_atom_output_feat])
    self.b_A = model_ops.zeros(shape=[
        self.n_atom_output_feat,
    ])

    self.trainable_weights = [
        self.W_AA, self.b_AA, self.W_PA, self.b_PA, self.W_A, self.b_A
    ]
    if self.update_pair:
      self.W_AP = init([self.n_atom_input_feat * 2, self.n_hidden_AP])
      self.b_AP = model_ops.zeros(shape=[
          self.n_hidden_AP,
      ])

      self.W_PP = init([self.n_pair_input_feat, self.n_hidden_PP])
      self.b_PP = model_ops.zeros(shape=[
          self.n_hidden_PP,
      ])

      self.W_P = init([self.n_hidden_P, self.n_pair_output_feat])
      self.b_P = model_ops.zeros(shape=[
          self.n_pair_output_feat,
      ])

      self.trainable_weights.extend(
          [self.W_AP, self.b_AP, self.W_PP, self.b_PP, self.W_P, self.b_P])