Beispiel #1
0
def select_feature(feature_ix):
    if feature_ix is not None:
        features_name = options_features[feature_ix]['label']
        features_class = get_available_features()[features_name]
        default_arguments = get_default_args_of_function(
            features_class.__init__)
        delete = [
            'sequence_time', 'sequence_hop_time', 'audio_win', 'audio_hop',
            'sr'
        ]
        for key in delete:
            default_arguments.pop(key)
        if features_name in params['features']:
            params_features = params['features'][features_name]
            for key in params_features.keys():
                default_arguments[key] = params_features[key]
        return [str(default_arguments)]
    else:
        return [""]
Beispiel #2
0
def do_features_extraction(status_features, feature_ix, sequence_time,
                           sequence_hop_time, audio_hop, audio_win, sr,
                           specific_parameters, dataset_path, audio_folder,
                           features_folder, dataset_ix):
    global feature_extractor
    if status_features != 'EXTRACTING':
        # return [False, '', 'success', 'True']
        raise dash.exceptions.PreventUpdate
    if feature_ix is None:
        return [True, 'Please select a Feature name', 'danger', 'True']
    if dataset_ix is None:
        return [True, 'Please select a dataset', 'danger', 'True']

    features_name = options_features[feature_ix]['label']
    dataset_name = options_datasets[dataset_ix]['label']

    feature_extractor_class = get_available_features()[features_name]

    specific_parameters = ast.literal_eval(specific_parameters)
    feature_extractor = feature_extractor_class(
        sequence_time=sequence_time,
        sequence_hop_time=sequence_hop_time,
        audio_win=audio_win,
        audio_hop=audio_hop,
        sr=sr,
        **specific_parameters)

    # get dataset class
    dataset_class = get_available_datasets()[dataset_name]

    dataset = dataset_class(dataset_path)
    if not dataset.check_if_downloaded():
        return [
            True,
            'Please download the dataset before doing feature extraction',
            'danger'
        ]

    print('Extracting features...')
    feature_extractor.extract(dataset)
    print('Done!')

    return [True, 'Features extracted', 'success', 'True']
Beispiel #3
0
def main():
    # Parse arguments
    parser = argparse.ArgumentParser(
        description=__doc__,
        formatter_class=argparse.RawDescriptionHelpFormatter)
    parser.add_argument(
        '-d',
        '--dataset',
        type=str,
        help='dataset name (e.g. UrbanSound8k, ESC50, URBAN_SED, SONYC_UST)',
        default='UrbanSound8k')
    parser.add_argument(
        '-f',
        '--features',
        type=str,
        help='features name (e.g. Spectrogram, MelSpectrogram, Openl3)',
        default='MelSpectrogram')
    parser.add_argument('-p',
                        '--path',
                        type=str,
                        help='path to the parameters.json file',
                        default='../')
    parser.add_argument(
        '-m',
        '--model',
        type=str,
        help='model name (e.g. MLP, SB_CNN, SB_CNN_SED, A_CRNN, VGGish)',
        default='SB_CNN')
    parser.add_argument('-fold',
                        '--fold_name',
                        type=str,
                        help='fold name',
                        default='fold1')
    parser.add_argument('-s',
                        '--models_path',
                        type=str,
                        help='path to save the trained model',
                        default='../trained_models')
    parser.add_argument('--aug', dest='augmentation', action='store_true')
    parser.add_argument('--no-aug', dest='augmentation', action='store_false')
    parser.set_defaults(augmentation=False)
    args = parser.parse_args()

    print(__doc__)

    if args.dataset not in get_available_datasets():
        raise AttributeError('Dataset not available')

    if args.features not in get_available_features():
        raise AttributeError('Features not available')

    if args.model not in get_available_models():
        raise AttributeError('Model not available')

    # Get parameters
    parameters_file = os.path.join(args.path, 'parameters.json')
    params = load_json(parameters_file)
    params_dataset = params['datasets'][args.dataset]
    params_features = params['features']
    params_model = params['models'][args.model]

    # Get and init dataset class
    dataset_class = get_available_datasets()[args.dataset]
    dataset_path = os.path.join(args.path, params_dataset['dataset_path'])
    dataset = dataset_class(dataset_path)

    if args.fold_name not in dataset.fold_list:
        raise AttributeError('Fold not available')

    # Data augmentation
    if args.augmentation:
        # Define the augmentations
        augmentations = params['data_augmentations']

        # Initialize AugmentedDataset
        dataset = AugmentedDataset(dataset, params['features']['sr'],
                                   augmentations)

        # Process all files
        print('Doing data augmentation ...')
        dataset.process()
        print('Done!')

    # Get and init feature class
    features_class = get_available_features()[args.features]
    features = features_class(
        sequence_time=params_features['sequence_time'],
        sequence_hop_time=params_features['sequence_hop_time'],
        audio_win=params_features['audio_win'],
        audio_hop=params_features['audio_hop'],
        sr=params_features['sr'],
        **params_features[args.features])
    print('Features shape: ', features.get_shape())

    # Check if features were extracted
    if not features.check_if_extracted(dataset):
        print('Extracting features ...')
        features.extract(dataset)
        print('Done!')

    use_validate_set = True
    if args.dataset in ['TUTSoundEvents2017', 'ESC50', 'ESC10']:
        # When have less data, don't use validation set.
        use_validate_set = False

    folds_train, folds_val, _ = evaluation_setup(
        args.fold_name,
        dataset.fold_list,
        params_dataset['evaluation_mode'],
        use_validate_set=use_validate_set)

    data_gen_train = DataGenerator(dataset,
                                   features,
                                   folds=folds_train,
                                   batch_size=params['train']['batch_size'],
                                   shuffle=True,
                                   train=True,
                                   scaler=None)

    scaler = Scaler(normalizer=params_model['normalizer'])
    print('Fitting scaler ...')
    scaler.fit(data_gen_train)
    print('Done!')

    # Pass scaler to data_gen_train to be used when data
    # loading
    data_gen_train.set_scaler(scaler)

    data_gen_val = DataGenerator(dataset,
                                 features,
                                 folds=folds_val,
                                 batch_size=params['train']['batch_size'],
                                 shuffle=False,
                                 train=False,
                                 scaler=scaler)

    # Define model
    features_shape = features.get_shape()
    n_frames_cnn = features_shape[1]
    n_freq_cnn = features_shape[2]
    n_classes = len(dataset.label_list)

    model_class = get_available_models()[args.model]

    metrics = ['classification']
    if args.dataset in sed_datasets:
        metrics = ['sed']
    if args.dataset in tagging_datasets:
        metrics = ['tagging']

    model_container = model_class(model=None,
                                  model_path=None,
                                  n_classes=n_classes,
                                  n_frames_cnn=n_frames_cnn,
                                  n_freq_cnn=n_freq_cnn,
                                  metrics=metrics,
                                  **params_model['model_arguments'])

    model_container.model.summary()

    # Set paths
    model_folder = os.path.join(args.models_path, args.model, args.dataset)
    exp_folder = os.path.join(model_folder, args.fold_name)
    mkdir_if_not_exists(exp_folder, parents=True)

    # Save model json and scaler
    model_container.save_model_json(model_folder)
    save_pickle(scaler, os.path.join(exp_folder, 'scaler.pickle'))

    # data_train = data_gen_train.get_data()
    # data_val = data_gen_val.get_data()

    # Train model
    model_container.train(
        data_gen_train,
        data_gen_val,
        # data_train, data_val,
        label_list=dataset.label_list,
        weights_path=exp_folder,
        **params['train'],
        sequence_time_sec=params_features['sequence_hop_time'])
Beispiel #4
0
def main():
    # Parse arguments
    parser = argparse.ArgumentParser(
        description=__doc__,
        formatter_class=argparse.RawDescriptionHelpFormatter
    )
    parser.add_argument(
        '-od', '--origin_dataset', type=str,
        help='dataset name (e.g. UrbanSound8k, ESC50, URBAN_SED, SONYC_UST)',
        default='UrbanSound8k'
    )
    parser.add_argument(
        '-ofold', '--origin_fold_name', type=str,
        help='origin fold name',
        default='fold1')
    parser.add_argument(
        '-d', '--dataset', type=str,
        help='dataset name (e.g. UrbanSound8k, ESC50, URBAN_SED, SONYC_UST)',
        default='ESC50'
    )
    parser.add_argument(
        '-fold', '--fold_name', type=str,
        help='destination fold name',
        default='fold1')
    parser.add_argument(
        '-f', '--features', type=str,
        help='features name (e.g. Spectrogram, MelSpectrogram, Openl3)',
        default='MelSpectrogram'
    )
    parser.add_argument(
        '-p', '--path', type=str,
        help='path to the parameters.json file',
        default='../'
    )
    parser.add_argument(
        '-m', '--model', type=str,
        help='model name (e.g. MLP, SB_CNN, SB_CNN_SED, A_CRNN, VGGish)',
        default='SB_CNN')

    parser.add_argument(
        '-s', '--models_path', type=str,
        help='path to save the trained model',
        default='../trained_models'
    )
    args = parser.parse_args()

    print(__doc__)

    if args.dataset not in get_available_datasets():
        raise AttributeError('Dataset not available')

    if args.features not in get_available_features():
        raise AttributeError('Features not available')

    if args.model not in get_available_models():
        raise AttributeError('Model not available')

    # Get parameters
    parameters_file = os.path.join(args.path, 'parameters.json')
    params = load_json(parameters_file)
    params_dataset = params['datasets'][args.dataset]
    params_features = params['features']
    params_model = params['models'][args.model]

    # Load origin model
    model_path_origin = os.path.join(args.models_path, args.model,
                                     args.origin_dataset)
    model_class = get_available_models()[args.model]
    metrics = ['accuracy']
    if args.dataset in sed_datasets:
        metrics = ['sed']
    model_container = model_class(
        model=None, model_path=model_path_origin,
        metrics=metrics
    )
    model_container.load_model_weights(
        os.path.join(model_path_origin, args.origin_fold_name))

    kwargs = {}
    if args.dataset in sed_datasets:
        kwargs = {'sequence_hop_time': params_features['sequence_hop_time']}

    # Get and init dataset class
    dataset_class = get_available_datasets()[args.dataset]
    dataset_path = os.path.join(args.path, params_dataset['dataset_path'])
    dataset = dataset_class(dataset_path, **kwargs)

    if args.fold_name not in dataset.fold_list:
        raise AttributeError('Fold not available')

    # Get and init feature class
    features_class = get_available_features()[args.features]
    features = features_class(
        sequence_time=params_features['sequence_time'],
        sequence_hop_time=params_features['sequence_hop_time'],
        audio_win=params_features['audio_win'],
        audio_hop=params_features['audio_hop'],
        sr=params_features['sr'], **params_features[args.features]
    )
    print('Features shape: ', features.get_shape())

    # Check if features were extracted
    if not features.check_if_extracted(dataset):
        print('Extracting features ...')
        features.extract(dataset)
        print('Done!')

    use_validate_set = True
    if args.dataset in ['TUTSoundEvents2017', 'ESC50', 'ESC10']:
        # When have less data, don't use validation set.
        use_validate_set = False

    folds_train, folds_val, _ = evaluation_setup(
        args.fold_name, dataset.fold_list,
        params_dataset['evaluation_mode'],
        use_validate_set=use_validate_set
    )

    data_gen_train = DataGenerator(
        dataset, features, folds=folds_train,
        batch_size=params['train']['batch_size'],
        shuffle=True, train=True, scaler=None
    )

    scaler = Scaler(normalizer=params_model['normalizer'])
    print('Fitting features ...')
    scaler.fit(data_gen_train)
    print('Done!')

    data_gen_train.set_scaler(scaler)

    data_gen_val = DataGenerator(
        dataset, features, folds=folds_val,
        batch_size=params['train']['batch_size'],
        shuffle=False, train=False, scaler=scaler
    )

    # Fine-tune model
    n_classes = len(dataset.label_list)
    layer_where_to_cut = -2
    model_container.fine_tuning(layer_where_to_cut,
                                new_number_of_classes=n_classes,
                                new_activation='sigmoid',
                                freeze_source_model=True)

    model_container.model.summary()

    # Set paths
    model_folder = os.path.join(
        args.models_path, args.model,
        args.origin_dataset+'_ft_'+args.dataset)
    exp_folder = os.path.join(model_folder, args.fold_name)
    mkdir_if_not_exists(exp_folder, parents=True)

    # Save model json and scaler
    model_container.save_model_json(model_folder)
    save_pickle(scaler, os.path.join(exp_folder, 'scaler.pickle'))

    # Train model
    model_container.train(
        data_gen_train, data_gen_val,
        label_list=dataset.label_list,
        weights_path=exp_folder,
        sequence_time_sec=params_features['sequence_hop_time'],
        **params['train'])
Beispiel #5
0
def main():
    # Parse arguments
    parser = argparse.ArgumentParser(
        description=__doc__,
        formatter_class=argparse.RawDescriptionHelpFormatter)
    parser.add_argument(
        '-d',
        '--dataset',
        type=str,
        help='dataset name (e.g. UrbanSound8k, ESC50, URBAN_SED, SONYC_UST)',
        default='UrbanSound8k')
    parser.add_argument(
        '-f',
        '--features',
        type=str,
        help='features name (e.g. Spectrogram, MelSpectrogram, Openl3)',
        default='MelSpectrogram')
    parser.add_argument('-p',
                        '--path',
                        type=str,
                        help='path to the parameters.json file',
                        default='../')
    args = parser.parse_args()

    print(__doc__)

    if args.dataset not in get_available_datasets():
        raise AttributeError('Dataset not available')

    if args.features not in get_available_features():
        raise AttributeError('Features not available')

    # Get parameters
    parameters_file = os.path.join(args.path, 'parameters.json')
    params = load_json(parameters_file)
    params_dataset = params['datasets'][args.dataset]
    params_features = params['features']

    # Get and init dataset class
    dataset_class = get_available_datasets()[args.dataset]
    dataset_path = os.path.join(args.path, params_dataset['dataset_path'])
    dataset = dataset_class(dataset_path)

    # Get and init feature class
    features_class = get_available_features()[args.features]
    features = features_class(
        sequence_time=params_features['sequence_time'],
        sequence_hop_time=params_features['sequence_hop_time'],
        audio_win=params_features['audio_win'],
        audio_hop=params_features['audio_hop'],
        sr=params_features['sr'],
        **params_features[args.features])

    # Extract features
    if features.check_if_extracted(dataset):
        print('%s features were already extracted for %s dataset. ' %
              (args.features, args.dataset))
    else:
        print('Extracting features ...')
        features.extract(dataset)

    print('Done!')
Beispiel #6
0
def main():
    # Parse arguments
    parser = argparse.ArgumentParser(
        description=__doc__,
        formatter_class=argparse.RawDescriptionHelpFormatter)
    parser.add_argument(
        '-d',
        '--dataset',
        type=str,
        help='dataset name (e.g. UrbanSound8k, ESC50, URBAN_SED, SONYC_UST)',
        default='UrbanSound8k')
    parser.add_argument(
        '-f',
        '--features',
        type=str,
        help='features name (e.g. Spectrogram, MelSpectrogram, Openl3)',
        default='MelSpectrogram')
    parser.add_argument('-p',
                        '--path',
                        type=str,
                        help='path to the parameters.json file',
                        default='../')
    parser.add_argument(
        '-m',
        '--model',
        type=str,
        help='model name (e.g. MLP, SB_CNN, SB_CNN_SED, A_CRNN, VGGish)',
        default='SB_CNN')
    parser.add_argument('-fold',
                        '--fold_name',
                        type=str,
                        help='fold name',
                        default='fold1')
    parser.add_argument('-s',
                        '--models_path',
                        type=str,
                        help='path to load the trained model',
                        default='../trained_models')
    parser.add_argument(
        '-ft',
        '--fine_tuning',
        type=str,
        help='fine-tuned dataset name (e.g. UrbanSound8k, ESC50, URBAN_SED)',
    )
    args = parser.parse_args()

    print(__doc__)

    if args.dataset not in get_available_datasets():
        raise AttributeError('Dataset not available')

    if args.features not in get_available_features():
        raise AttributeError('Features not available')

    if args.model not in get_available_models():
        raise AttributeError('Model not available')

    # Get parameters
    parameters_file = os.path.join(args.path, 'parameters.json')
    params = load_json(parameters_file)
    params_features = params['features']

    dataset_name = (args.dataset
                    if args.fine_tuning is None else args.fine_tuning)
    params_dataset = params['datasets'][dataset_name]

    # Get and init dataset class
    dataset_class = get_available_datasets()[dataset_name]
    dataset_path = os.path.join(args.path, params_dataset['dataset_path'])
    dataset = dataset_class(dataset_path)

    if args.fold_name not in dataset.fold_list:
        raise AttributeError('Fold not available')

    # Get and init feature class
    features_class = get_available_features()[args.features]
    features = features_class(
        sequence_time=params_features['sequence_time'],
        sequence_hop_time=params_features['sequence_hop_time'],
        audio_win=params_features['audio_win'],
        audio_hop=params_features['audio_hop'],
        sr=params_features['sr'],
        **params_features[args.features])

    # Check if features were extracted
    if not features.check_if_extracted(dataset):
        print('Extracting features ...')
        features.extract(dataset)
        print('Done!')

    # Set paths
    if args.fine_tuning is None:
        dataset_path = args.dataset
    else:
        dataset_path = args.dataset + '_ft_' + args.fine_tuning

    model_folder = os.path.join(args.models_path, args.model, dataset_path)
    exp_folder = os.path.join(model_folder, args.fold_name)

    # Load scaler
    scaler_file = os.path.join(exp_folder, 'scaler.pickle')
    scaler = load_pickle(scaler_file)

    # Init data generator
    data_gen_test = DataGenerator(dataset,
                                  features,
                                  folds=[args.fold_name],
                                  batch_size=params['train']['batch_size'],
                                  shuffle=False,
                                  train=False,
                                  scaler=scaler)

    # Load model and best weights
    model_class = get_available_models()[args.model]
    metrics = ['classification']
    if dataset_name in sed_datasets:
        metrics = ['sed']
    if args.dataset in tagging_datasets:
        metrics = ['tagging']

    model_container = model_class(model=None,
                                  model_path=model_folder,
                                  metrics=metrics)
    model_container.load_model_weights(exp_folder)

    kwargs = {}
    if dataset_name in sed_datasets:
        kwargs = {
            'sequence_time_sec': params_features['sequence_hop_time'],
            'metric_resolution_sec': 1.0
        }
    results = model_container.evaluate(data_gen_test,
                                       label_list=dataset.label_list,
                                       **kwargs)

    print(results[metrics[0]])
Beispiel #7
0
        # dbc.Col(dbc.Input(type="number", id="n_fft", placeholder="n_fft",
        #                  value=params_features['n_fft']), width=4,),
        dbc.Label("sampling rate", html_for="example-email-row", width=2),
        dbc.Col(
            dbc.Input(type="number",
                      id="sr",
                      placeholder="sr",
                      value=params_features['sr']),
            width=4,
        ),
    ],
    row=True,
)

# Features selector
features_classes = get_available_features()
options_features = [{
    'label': name,
    'value': value
} for value, name in enumerate(features_classes.keys())]
feature_selector = dbc.FormGroup(
    [
        dbc.Label("Feature", html_for="dropdown", width=2),
        dbc.Col(dcc.Dropdown(id="feature_name", options=options_features),
                width=10),
    ],
    row=True,
)

# Specific parameters of features selected
specific_parameters = dbc.Textarea(id='specific_parameters',
Beispiel #8
0
def create_model(n_clicks_create_model, n_clicks_load_model, model_ix,
                 feature_ix, dataset_ix, model_parameters, sequence_time,
                 sequence_hop_time, audio_hop, audio_win, sr,
                 specific_parameters, dataset_path, audio_folder,
                 features_folder, model_path):
    global model_container
    global feature_extractor
    global dataset

    ctx = dash.callback_context
    if (n_clicks_create_model is None) & (n_clicks_load_model is None):
        return [False, "", 'success', '']
    else:
        button_id = ctx.triggered[0]['prop_id'].split('.')[0]

    if (button_id == 'create_model') | (button_id == 'load_model'):
        if model_ix is None:
            return [True, 'Please select a Model', 'danger', '']
        if feature_ix is None:
            return [True, 'Please select a Feature extractor', 'danger', '']
        if dataset_ix is None:
            return [True, 'Please select a Dataset', 'danger', '']

        model_name = options_models[model_ix]['label']
        feature_name = options_features[feature_ix]['label']
        dataset_name = options_datasets[dataset_ix]['label']

        feature_extractor_class = get_available_features()[feature_name]
        specific_parameters = ast.literal_eval(specific_parameters)
        feature_extractor = feature_extractor_class(
            sequence_time=sequence_time,
            sequence_hop_time=sequence_hop_time,
            audio_win=audio_win,
            audio_hop=audio_hop,
            sr=sr,
            **specific_parameters)

        features_shape = feature_extractor.get_shape()
        n_frames_cnn = features_shape[1]
        n_freq_cnn = features_shape[2]

        # get dataset class
        dataset_class = get_available_datasets()[dataset_name]
        # init data_generator
        kwargs = {}
        if dataset_name == 'URBAN_SED':
            kwargs = {'sequence_hop_time': sequence_hop_time}
        dataset = dataset_class(dataset_path, **kwargs)

        n_classes = len(dataset.label_list)

        model_class = get_available_models()[model_name]

        model_parameters = ast.literal_eval(model_parameters)
        if (button_id == 'create_model'):
            with graph.as_default():
                model_container = model_class(model=None,
                                              model_path=None,
                                              n_classes=n_classes,
                                              n_frames_cnn=n_frames_cnn,
                                              n_freq_cnn=n_freq_cnn,
                                              **model_parameters)

                model_container.model.summary()
                if model_name == 'VGGish':
                    model_container.load_pretrained_model_weights()
                    model_container.fine_tuning(
                        -1,
                        new_number_of_classes=n_classes,
                        new_activation='softmax',
                        freeze_source_model=True)

                stringlist = []
                model_container.model.summary(
                    print_fn=lambda x: stringlist.append(x))
                summary = "\n".join(stringlist)

                mkdir_if_not_exists(conv_path(os.path.dirname(model_path)))
                mkdir_if_not_exists(conv_path(model_path))
                model_container.save_model_json(conv_path(model_path))

                return [True, 'Model created', 'success', summary]

        if (button_id == 'load_model'):
            with graph.as_default():
                model_container = model_class(model=None,
                                              model_path=conv_path(model_path))
                model_container.model.summary()
                stringlist = []
                model_container.model.summary(
                    print_fn=lambda x: stringlist.append(x))
                summary = "\n".join(stringlist)
            return [True, 'Model loaded', 'success', summary]
        # model_container.save_model_weights(model_path)

    return [False, "", 'success', '']
Beispiel #9
0
def check_pipeline(feature_ix, sequence_time, sequence_hop_time, audio_hop,
                   audio_win, sr, specific_parameters, dataset_path,
                   audio_folder, features_folder, dataset_ix,
                   end_features_extraction, status_features, model_parameters,
                   model_path, model_ix):

    global model_container
    global feature_extractor
    global data_generator_train

    ctx = dash.callback_context
    button_id = ctx.triggered[0]['prop_id'].split('.')[0]

    # if was trigger by end_features_extraction and
    # the features were already calculated
    if button_id == 'end_features_extraction' and \
       status_features == 'NOT_EXTRACTING':
        raise dash.exceptions.PreventUpdate

    feature_extractor = None
    if feature_ix is not None:
        feature_name = (options_features[feature_ix]['label']
                        if feature_ix is not None else "")
        feature_extractor_class = get_available_features()[feature_name]

        specific_parameters = ast.literal_eval(specific_parameters)
        feature_extractor = feature_extractor_class(
            sequence_time=sequence_time,
            sequence_hop_time=sequence_hop_time,
            audio_win=audio_win,
            audio_hop=audio_hop,
            sr=sr,
            **specific_parameters)
    checks = []
    if dataset_ix is not None:
        dataset_name = options_datasets[dataset_ix]['label']

        # get dataset class
        dataset_class = get_available_datasets()[dataset_name]
        dataset = dataset_class(dataset_path)
        if dataset.check_if_downloaded():
            checks.append('dataset')
        if feature_ix is not None:
            features_extracted = feature_extractor.check_if_extracted(dataset)

            if features_extracted:
                checks.append('features')

            if model_ix is not None:
                model_name = options_models[model_ix]['label']

                features_shape = feature_extractor.get_shape()
                n_frames_cnn = features_shape[1]
                n_freq_cnn = features_shape[2]

                n_classes = len(dataset.label_list)

                model_class = get_available_models()[model_name]

                model_parameters = ast.literal_eval(model_parameters)

                with graph.as_default():
                    model_container = model_class(model=None,
                                                  model_path=None,
                                                  n_classes=n_classes,
                                                  n_frames_cnn=n_frames_cnn,
                                                  n_freq_cnn=n_freq_cnn,
                                                  **model_parameters)

                    if model_name == 'VGGish':
                        model_container.load_pretrained_model_weights()
                        model_container.fine_tuning(
                            -1,
                            new_number_of_classes=n_classes,
                            new_activation='softmax',
                            freeze_source_model=True)

                    model_exists = model_container.check_if_model_exists(
                        conv_path(model_path))
                    if model_exists:
                        checks.append('model')

    return [checks]