def test_output_is_correct(self): processor = processors.Add(name='add') x = tf.zeros((2, 3), dtype=tf.float32) + 1.0 y = tf.zeros((2, 3), dtype=tf.float32) + 2.0 output = processor(x, y) expected = np.zeros((2, 3), dtype=np.float32) + 3.0 self.assertAllEqual(expected, output)
def test_output_is_correct(self): processor = processors.Add(name='add') x = tf.zeros((2, 3), dtype=tf.float32) + 1.0 y = tf.zeros((2, 3), dtype=tf.float32) + 2.0 output = processor(x, y) with self.cached_session() as sess: actual = sess.run(output) expected = np.zeros((2, 3), dtype=np.float32) + 3.0 self.assertAllEqual(expected, actual)
def setUp(self): """Create some dummy input data for the chain.""" super().setUp() # Create inputs. self.n_batch = 4 self.n_frames = 1000 self.n_time = 64000 rand_signal = lambda ch: np.random.randn(self.n_batch, self.n_frames, ch) self.nn_outputs = { 'amps': rand_signal(1), 'harmonic_distribution': rand_signal(99), 'magnitudes': rand_signal(256), 'f0_hz': 200 + rand_signal(1), 'target_audio': np.random.randn(self.n_batch, self.n_time) } # Create Processors. harmonic = synths.Harmonic(name='harmonic') noise = synths.FilteredNoise(name='noise') add = processors.Add(name='add') reverb = effects.Reverb(trainable=True, name='reverb') # Create DAG for testing. self.dag = [ (harmonic, ['amps', 'harmonic_distribution', 'f0_hz']), (noise, ['magnitudes']), (add, ['noise/signal', 'harmonic/signal']), (reverb, ['add/signal']), ] self.expected_outputs = [ 'amps', 'harmonic_distribution', 'magnitudes', 'f0_hz', 'target_audio', 'harmonic/signal', 'harmonic/controls/amplitudes', 'harmonic/controls/harmonic_distribution', 'harmonic/controls/f0_hz', 'noise/signal', 'noise/controls/magnitudes', 'add/signal', 'reverb/signal', 'reverb/controls/ir', 'out/signal', ]