Beispiel #1
0
    def test_build_model(self, gin_file):
        """Tests if Model builds properly and produces audio of correct shape.

    Args:
      gin_file: Name of gin_file to use.
    """
        with gin.unlock_config():
            gin.clear_config()
            gin.parse_config_file(gin_file)

        model = models.Autoencoder()
        controls = model.get_controls(self.inputs)
        self.assertIsInstance(controls, dict)
        # Confirm that model generates correctly sized audio.
        audio_gen_shape = controls['processor_group']['signal'].shape.as_list()
        self.assertEqual(audio_gen_shape, list(self.inputs['audio'].shape))
Beispiel #2
0
       (add, ['noise/signal', 'harmonic/signal'])]

processor_group = ddsp.processors.ProcessorGroup(dag=dag,
                                                 name='processor_group')


# Loss_functions
spectral_loss = ddsp.losses.SpectralLoss(loss_type='L1',
                                         mag_weight=1.0,
                                         logmag_weight=1.0)

with strategy.scope():
  # Put it together in a model.
  model = models.Autoencoder(preprocessor=preprocessor,
                             encoder=None,
                             decoder=decoder,
                             processor_group=processor_group,
                             losses=[spectral_loss])
  trainer = trainers.Trainer(model, strategy, learning_rate=1e-3)

"""## or [`gin`](https://github.com/google/gin-config)"""

gin_string = """
import ddsp
import ddsp.training

# Preprocessor
models.Autoencoder.preprocessor = @preprocessing.F0LoudnessPreprocessor()
preprocessing.F0LoudnessPreprocessor.time_steps = 1000