Beispiel #1
0
def initialize_models(voc):
    print('Building encoder and decoder ...')
    # initialize word embeddings
    embedding = nn.Embedding(voc.num_words, c.HIDDEN_SIZE)
    if c.LOAD_FILENAME:
        embedding.load_state_dict(embedding_sd)
    # initialize encoder & decoder models
    encoder = EncoderRNN(c.HIDDEN_SIZE, embedding, c.ENCODER_N_LAYERS,
                         c.DROPOUT)
    decoder = LuongAttnDecoderRNN(c.ATTN_MODEL, embedding, c.HIDDEN_SIZE,
                                  voc.num_words, c.DECODER_N_LAYERS, c.DROPOUT)
    if c.LOAD_FILENAME:
        encoder.load_state_dict(encoder_sd)
        decoder.load_state_dict(decoder_sd)
    # Use appropriate device
    encoder = encoder.to(c.DEVICE)
    decoder = decoder.to(c.DEVICE)
    print('Models built and ready to go!')
    return embedding, encoder, decoder
Beispiel #2
0
def main():
    """primary entry
    """
    voc, pairs = loadPreparedData()
    print('Building encoder and decoder ...')
    # Initialize word embeddings
    #embedding = nn.Embedding(voc.num_words, params.hidden_size)
    embedding = nn.Embedding(voc.num_words, params.embedding_size)
    # Initialize encoder & decoder models
    encoder = EncoderRNN(embedding, params.hidden_size,
                         params.encoder_n_layers, params.dropout)
    decoder = LuongAttnDecoderRNN(params.attn_model, embedding,
                                  params.hidden_size, voc.num_words,
                                  params.decoder_n_layers, params.dropout)
    # Use appropriate device
    encoder = encoder.to(params.device)
    decoder = decoder.to(params.device)
    print('Models built and ready to go!')

    # Ensure dropout layers are in train mode
    encoder.train()
    decoder.train()

    # Initialize optimizers
    print('Building optimizers ...')
    encoder_optimizer = optim.Adam(encoder.parameters(),
                                   lr=params.learning_rate)
    decoder_optimizer = optim.Adam(decoder.parameters(),
                                   lr=params.learning_rate *
                                   params.decoder_learning_ratio)

    # Run training iterations
    print("Starting Training!")
    trainIters(voc,
               pairs,
               encoder,
               decoder,
               encoder_optimizer,
               decoder_optimizer,
               embedding,
               params.encoder_n_layers,
               params.decoder_n_layers,
               params.save_dir,
               params.n_iteration,
               params.batch_size,
               params.print_every,
               params.save_every,
               params.clip,
               params.corpus_name,
               load_filename=None)
Beispiel #3
0
checkpoint = torch.load(ckpt)
encoder_sd = checkpoint['en']
decoder_sd = checkpoint['de']
encoder_optimizer_sd = checkpoint['en_opt']
decoder_optimizer_sd = checkpoint['de_opt']
embedding_sd = checkpoint['embedding']
voc.__dict__ = checkpoint['voc_dict']

# Initialize word embeddings
embedding = nn.Embedding(voc.num_words, hidden_size)
embedding.load_state_dict(embedding_sd)

# Initialize encoder & decoder models
encoder = EncoderRNN(hidden_size, embedding, encoder_n_layers, dropout)
decoder = LuongAttnDecoderRNN(attn_model, embedding, hidden_size,
                              voc.num_words, decoder_n_layers, dropout)
encoder.load_state_dict(encoder_sd)
decoder.load_state_dict(decoder_sd)

encoder = encoder.to(device)
decoder = decoder.to(device)

# Set dropout layers to eval mode
encoder.eval()
decoder.eval()

# Initialize search module
searcher = GreedySearchDecoder(encoder, decoder)

# Begin chatting (uncomment and run the following line to begin)
evaluateInput(encoder, decoder, searcher, voc)
Beispiel #4
0
                        num_workers=4,
                        collate_fn=collate_fn)


### Initialize model
encoder = EncoderRNN(embedding=src_embedding,
                     rnn_type=opts.rnn_type,
                     hidden_size=opts.hidden_size,
                     num_layers=opts.num_layers,
                     dropout=opts.dropout,
                     bidirectional=opts.bidirectional)

decoder = LuongAttnDecoderRNN(encoder, embedding=tgt_embedding,
                              attention=opts.attention,
                              tie_embeddings=opts.tie_embeddings,
                              dropout=opts.dropout,
                              tie_ext_feature=opts.tie_ext_feature,
                              ext_rate_embedding=ext_rate_emebdding,
                              ext_appcate_embedding=ext_appcate_embedding, ext_seqlen_embedding=ext_seqlen_embedding, ext_senti_embedding=ext_senti_embedding
                              )

print("emb start")
if opts.pretrained_embeddings:
    if opts.use_keyword:
        train_embedding = Embedding(filename=args.glove_filename, embedding_size=embedding_size).load_embedding_plus_keyword(train_dataset.src_vocab)
        target_embedding = Embedding(filename=args.glove_filename, embedding_size=embedding_size).load_embedding_plus_keyword(
            train_dataset.tgt_vocab)
    else:
        train_embedding = Embedding(filename=args.glove_filename, embedding_size=embedding_size).load_embedding(train_dataset.src_vocab)
        target_embedding = Embedding(filename=args.glove_filename, embedding_size=embedding_size).load_embedding(train_dataset.tgt_vocab)
    encoder.embedding.weight.data.copy_(train_embedding)
    decoder.embedding.weight.data.copy_(target_embedding)
Beispiel #5
0
    #checkpoint = torch.load(loadFilename, map_location=torch.device('cpu'))
    encoder_sd = checkpoint['en']
    decoder_sd = checkpoint['de']
    encoder_optimizer_sd = checkpoint['en_opt']
    decoder_optimizer_sd = checkpoint['de_opt']
    embedding_sd = checkpoint['embedding']
    voc.__dict__ = checkpoint['voc_dict']

print('Building encoder and decoder ...')
# Initialize word embeddings
embedding = nn.Embedding(voc.num_words, hidden_size)
if loadFilename:
    embedding.load_state_dict(embedding_sd)
# Initialize encoder & decoder models
encoder = EncoderRNN(hidden_size, embedding, encoder_n_layers, dropout)
decoder = LuongAttnDecoderRNN(attn_model, embedding, hidden_size,
                              voc.num_words, decoder_n_layers, dropout)
if loadFilename:
    encoder.load_state_dict(encoder_sd)
    decoder.load_state_dict(decoder_sd)
# Use appropriate device
encoder = encoder.to(device)
decoder = decoder.to(device)
print('Models built and ready to go!')

# Ensure dropout layers are in train mode
encoder.train()
decoder.train()

# Initialize optimizers
print('Building optimizers ...')
encoder_optimizer = optim.Adam(encoder.parameters(), lr=learning_rate)