Beispiel #1
0
 def forward(self, outputs: Dict[str, Tensor],
             batch: Dict[str, Tensor]) -> Tensor:
     if self.masked:
         return self.reconstruction_loss(
             outputs["reconstructed"], batch["features"],
             inverse_mask(batch["missing_mask"]))
     else:
         return self.reconstruction_loss(outputs["reconstructed"],
                                         batch["features"])
Beispiel #2
0
    def forward(self, outputs: Dict[str, Tensor],
                batch: Dict[str, Tensor]) -> Tensor:
        if self.masked:
            reconstruction_loss = self.reconstruction_loss(
                outputs["reconstructed"], batch["features"],
                inverse_mask(batch["missing_mask"]))
        else:
            reconstruction_loss = self.reconstruction_loss(
                outputs["reconstructed"], batch["features"])

        kld_loss = -0.5 * torch.sum(1 + outputs["log_var"] -
                                    outputs["mu"].pow(2) -
                                    outputs["log_var"].exp())

        return reconstruction_loss + kld_loss
Beispiel #3
0
    def run(self, configuration: Configuration) -> None:
        metadata = load_metadata(configuration.metadata)
        inputs = torch.from_numpy(np.load(configuration.inputs))
        missing_mask = torch.from_numpy(np.load(configuration.missing_mask))
        non_missing_mask = inverse_mask(missing_mask)

        assert inputs.shape == missing_mask.shape

        filling_values = torch.zeros(metadata.get_num_features(), dtype=inputs.dtype)
        for variable_metadata in metadata.get_by_independent_variable():
            index = variable_metadata.get_feature_index()
            size = variable_metadata.get_size()
            # binary
            if variable_metadata.is_binary():
                # count how many ones in the variable where the non missing mask is one
                one_count = inputs[non_missing_mask[:, index] == 1, index].sum()
                # count how many ones non missing values the variable has and subtract the ones
                zero_count = non_missing_mask[:, index].sum() - one_count
                # fill with a one if there are more ones than zeros
                # if not fill with a zero
                filling_value = (1 if one_count >= zero_count else 0)
            # categorical
            elif variable_metadata.is_categorical():
                # how many ones per column (per categorical variable value)
                column_count = torch.zeros(size)
                for offset in range(size):
                    column_count[offset] = inputs[non_missing_mask[:, index + offset] == 1, index + offset].sum()
                # get the most common
                filling_value = one_hot(column_count.argmax(), num_classes=size)
            # numerical
            else:
                # take the mean of the values where the non missing mask is one
                filling_value = inputs[non_missing_mask[:, index] == 1, index].mean()
            # fill the variable
            filling_values[index:index + size] = filling_value

        # save the filling values
        np.save(configuration.outputs, filling_values.numpy())
Beispiel #4
0
    def train_generator_step(configuration: Configuration, metadata: Metadata,
                             architecture: Architecture,
                             batch: Batch) -> float:
        # clean previous gradients
        architecture.generator_optimizer.zero_grad()

        # generate a batch of fake features with the same size as the real feature batch
        generated = architecture.generator(batch["features"],
                                           missing_mask=batch["missing_mask"])
        # replace the missing features by the generated
        imputed = compose_with_mask(
            mask=batch["missing_mask"],
            differentiable=True,  # now there are no NaNs and this should be used
            where_one=generated,
            where_zero=batch["raw_features"])
        # generate hint
        hint = generate_hint(batch["missing_mask"],
                             configuration.hint_probability, metadata)

        # calculate loss
        loss = architecture.generator_loss(architecture=architecture,
                                           features=batch["raw_features"],
                                           generated=generated,
                                           imputed=imputed,
                                           hint=hint,
                                           non_missing_mask=inverse_mask(
                                               batch["missing_mask"]))

        # calculate gradients
        loss.backward()

        # update the generator weights
        architecture.generator_optimizer.step()

        # return the loss
        return to_cpu_if_was_in_gpu(loss).item()
Beispiel #5
0
    def impute(self, configuration: Configuration, metadata: Metadata,
               architecture: Architecture, batch: Dict[str, Tensor]) -> Tensor:
        # loss function
        loss_function = create_component(architecture, metadata,
                                         configuration.reconstruction_loss)
        masked_loss_function = MaskedReconstructionLoss(loss_function)
        batch_size = batch["features"].shape[0] * batch["features"].shape[1]
        # we need the non missing mask for the loss
        non_missing_mask = inverse_mask(batch["missing_mask"])

        # initial noise
        noise = to_gpu_if_available(
            FloatTensor(len(batch["features"]),
                        architecture.arguments.noise_size).normal_())
        noise.requires_grad_()

        # it is not the generator what we are updating
        # it is the noise
        optimizer = Adam([noise],
                         weight_decay=0,
                         lr=configuration.noise_learning_rate)
        architecture.generator.eval()

        # logger
        log_path = create_parent_directories_if_needed(configuration.logs)
        logger = TrainLogger(self.logger, log_path, False)

        # initial generation
        logger.start_timer()
        generated = architecture.generator(noise,
                                           condition=batch.get("labels"))

        # iterate until we reach the maximum number of iterations or until the non missing loss is too small
        max_iterations = configuration.max_iterations
        for iteration in range(1, max_iterations + 1):
            # compute the loss on the non-missing values
            non_missing_loss = masked_loss_function(generated,
                                                    batch["features"],
                                                    non_missing_mask)
            logger.log(iteration, max_iterations, "non_missing_loss",
                       to_cpu_if_was_in_gpu(non_missing_loss).item())

            # this loss only makes sense if the ground truth is present
            # only used for debugging
            if configuration.get("log_missing_loss", False):
                # this part should not affect the gradient calculation
                with torch.no_grad():
                    missing_loss = masked_loss_function(
                        generated, batch["raw_features"],
                        batch["missing_mask"])
                    logger.log(iteration, max_iterations, "missing_loss",
                               to_cpu_if_was_in_gpu(missing_loss).item())

                    loss = loss_function(generated,
                                         batch["raw_features"]) / batch_size
                    logger.log(iteration, max_iterations, "loss",
                               to_cpu_if_was_in_gpu(loss).item())

            # if the generation is good enough we stop
            if to_cpu_if_was_in_gpu(non_missing_loss).item(
            ) < configuration.get("tolerance", 1e-5):
                break

            # clear previous gradients
            optimizer.zero_grad()
            # compute the gradients
            non_missing_loss.backward()
            # update the noise
            optimizer.step()

            # generate next
            logger.start_timer()
            generated = architecture.generator(noise,
                                               condition=batch.get("labels"))

        return generated