Beispiel #1
0
def test_DTNNEmbedding_pickle():
  tg = TensorGraph()
  atom_numbers = Feature(shape=(None, 23), dtype=tf.int32)
  Embedding = DTNNEmbedding(in_layers=[atom_numbers])
  tg.add_output(Embedding)
  tg.set_loss(Embedding)
  tg.build()
  tg.save()
Beispiel #2
0
  def build_graph(self):
    self.smiles_seqs = Feature(shape=(None, self.seq_length), dtype=tf.int32)
    # Character embedding
    self.Embedding = DTNNEmbedding(
        n_embedding=self.n_embedding,
        periodic_table_length=len(self.char_dict.keys()) + 1,
        in_layers=[self.smiles_seqs])
    self.pooled_outputs = []
    self.conv_layers = []
    for filter_size, num_filter in zip(self.kernel_sizes, self.num_filters):
      # Multiple convolutional layers with different filter widths
      self.conv_layers.append(
          Conv1D(
              kernel_size=filter_size,
              filters=num_filter,
              padding='valid',
              in_layers=[self.Embedding]))
      # Max-over-time pooling
      self.pooled_outputs.append(
          ReduceMax(axis=1, in_layers=[self.conv_layers[-1]]))
    # Concat features from all filters(one feature per filter)
    concat_outputs = Concat(axis=1, in_layers=self.pooled_outputs)
    dropout = Dropout(dropout_prob=self.dropout, in_layers=[concat_outputs])
    dense = Dense(
        out_channels=200, activation_fn=tf.nn.relu, in_layers=[dropout])
    # Highway layer from https://arxiv.org/pdf/1505.00387.pdf
    self.gather = Highway(in_layers=[dense])

    costs = []
    self.labels_fd = []
    for task in range(self.n_tasks):
      if self.mode == "classification":
        classification = Dense(
            out_channels=2, activation_fn=None, in_layers=[self.gather])
        softmax = SoftMax(in_layers=[classification])
        self.add_output(softmax)

        label = Label(shape=(None, 2))
        self.labels_fd.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)
      if self.mode == "regression":
        regression = Dense(
            out_channels=1, activation_fn=None, in_layers=[self.gather])
        self.add_output(regression)

        label = Label(shape=(None, 1))
        self.labels_fd.append(label)
        cost = L2Loss(in_layers=[label, regression])
        costs.append(cost)
    if self.mode == "classification":
      all_cost = Stack(in_layers=costs, axis=1)
    elif self.mode == "regression":
      all_cost = Stack(in_layers=costs, axis=1)
    self.weights = Weights(shape=(None, self.n_tasks))
    loss = WeightedError(in_layers=[all_cost, self.weights])
    self.set_loss(loss)
Beispiel #3
0
  def test_dtnn_embedding(self):
    """Test that DTNNEmbedding can be invoked."""
    n_embedding = 10
    periodic_table_length = 20
    test_tensor_input = np.random.permutation(
        np.arange(0, periodic_table_length // 2, dtype=np.int32))
    with self.session() as sess:
      test_tensor = tf.convert_to_tensor(test_tensor_input, dtype=tf.int32)
      dtnn_embedding = DTNNEmbedding(
          n_embedding=n_embedding, periodic_table_length=periodic_table_length)
      dtnn_embedding.create_tensor(in_layers=[test_tensor])

      # Layer is wrapper around embedding lookup, tested that then
      sess.run(tf.global_variables_initializer())
      out_tensor = dtnn_embedding.out_tensor.eval()
      embedding_val = dtnn_embedding.trainable_variables[0].eval()
      expected_output = embedding_val[test_tensor_input]
      self.assertAllClose(out_tensor, expected_output)
      self.assertAllClose(out_tensor.shape,
                          (periodic_table_length // 2, n_embedding))
Beispiel #4
0
  def test_dtnn_embedding(self):
    """Test that DTNNEmbedding can be invoked."""
    n_embedding = 10
    periodic_table_length = 20
    test_tensor_input = np.random.permutation(
        np.arange(0, periodic_table_length // 2, dtype=np.int32))
    with self.session() as sess:
      test_tensor = tf.convert_to_tensor(test_tensor_input, dtype=tf.int32)
      dtnn_embedding = DTNNEmbedding(
          n_embedding=n_embedding, periodic_table_length=periodic_table_length)
      dtnn_embedding.create_tensor(in_layers=[test_tensor])

      # Layer is wrapper around embedding lookup, tested that then
      sess.run(tf.global_variables_initializer())
      out_tensor = dtnn_embedding.out_tensor.eval()
      embedding_val = dtnn_embedding.embedding_list.eval()
      expected_output = embedding_val[test_tensor_input]
      self.assertAllClose(out_tensor, expected_output)
      self.assertAllClose(out_tensor.shape,
                          (periodic_table_length // 2, n_embedding))
Beispiel #5
0
    def _build_graph(self):
        self.smiles_seqs = Feature(shape=(None, self.seq_length),
                                   dtype=tf.int32)
        # Character embedding
        Embedding = DTNNEmbedding(
            n_embedding=self.n_embedding,
            periodic_table_length=len(self.char_dict.keys()) + 1,
            in_layers=[self.smiles_seqs])
        pooled_outputs = []
        conv_layers = []
        for filter_size, num_filter in zip(self.kernel_sizes,
                                           self.num_filters):
            # Multiple convolutional layers with different filter widths
            conv_layers.append(
                Conv1D(kernel_size=filter_size,
                       filters=num_filter,
                       padding='valid',
                       in_layers=[Embedding]))
            # Max-over-time pooling
            pooled_outputs.append(
                ReduceMax(axis=1, in_layers=[conv_layers[-1]]))
        # Concat features from all filters(one feature per filter)
        concat_outputs = Concat(axis=1, in_layers=pooled_outputs)
        dropout = Dropout(dropout_prob=self.dropout,
                          in_layers=[concat_outputs])
        dense = Dense(out_channels=200,
                      activation_fn=tf.nn.relu,
                      in_layers=[dropout])
        # Highway layer from https://arxiv.org/pdf/1505.00387.pdf
        gather = Highway(in_layers=[dense])

        if self.mode == "classification":
            logits = Dense(out_channels=self.n_tasks * 2,
                           activation_fn=None,
                           in_layers=[gather])
            logits = Reshape(shape=(-1, self.n_tasks, 2), in_layers=[logits])
            output = SoftMax(in_layers=[logits])
            self.add_output(output)
            labels = Label(shape=(None, self.n_tasks, 2))
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])

        else:
            vals = Dense(out_channels=self.n_tasks * 1,
                         activation_fn=None,
                         in_layers=[gather])
            vals = Reshape(shape=(-1, self.n_tasks, 1), in_layers=[vals])
            self.add_output(vals)
            labels = Label(shape=(None, self.n_tasks, 1))
            loss = ReduceSum(L2Loss(in_layers=[labels, vals]))

        weights = Weights(shape=(None, self.n_tasks))
        weighted_loss = WeightedError(in_layers=[loss, weights])
        self.set_loss(weighted_loss)
Beispiel #6
0
    def build_graph(self):
        """Building graph structures:
            Features => DTNNEmbedding => DTNNStep => DTNNStep => DTNNGather => Regression
            """
        self.atom_number = Feature(shape=(None, ), dtype=tf.int32)
        self.distance = Feature(shape=(None, self.n_distance))
        self.atom_membership = Feature(shape=(None, ), dtype=tf.int32)
        self.distance_membership_i = Feature(shape=(None, ), dtype=tf.int32)
        self.distance_membership_j = Feature(shape=(None, ), dtype=tf.int32)

        dtnn_embedding = DTNNEmbedding(n_embedding=self.n_embedding,
                                       in_layers=[self.atom_number])
        if self.dropout > 0.0:
            dtnn_embedding = Dropout(self.dropout, in_layers=dtnn_embedding)
        dtnn_layer1 = DTNNStep(n_embedding=self.n_embedding,
                               n_distance=self.n_distance,
                               in_layers=[
                                   dtnn_embedding, self.distance,
                                   self.distance_membership_i,
                                   self.distance_membership_j
                               ])
        if self.dropout > 0.0:
            dtnn_layer1 = Dropout(self.dropout, in_layers=dtnn_layer1)
        dtnn_layer2 = DTNNStep(n_embedding=self.n_embedding,
                               n_distance=self.n_distance,
                               in_layers=[
                                   dtnn_layer1, self.distance,
                                   self.distance_membership_i,
                                   self.distance_membership_j
                               ])
        if self.dropout > 0.0:
            dtnn_layer2 = Dropout(self.dropout, in_layers=dtnn_layer2)
        dtnn_gather = DTNNGather(n_embedding=self.n_embedding,
                                 layer_sizes=[self.n_hidden],
                                 n_outputs=self.n_tasks,
                                 output_activation=self.output_activation,
                                 in_layers=[dtnn_layer2, self.atom_membership])
        if self.dropout > 0.0:
            dtnn_gather = Dropout(self.dropout, in_layers=dtnn_gather)

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        labels = Label(shape=(None, n_tasks))
        output = Reshape(
            shape=(None, n_tasks),
            in_layers=[Dense(in_layers=dtnn_gather, out_channels=n_tasks)])
        self.add_output(output)
        weighted_loss = ReduceSum(L2Loss(in_layers=[labels, output, weights]))
        self.set_loss(weighted_loss)
Beispiel #7
0
  def build_graph(self):
    """Building graph structures:
    Features => DTNNEmbedding => DTNNStep => DTNNStep => DTNNGather => Regression
    """
    self.atom_number = Feature(shape=(None,), dtype=tf.int32)
    self.distance = Feature(shape=(None, self.n_distance))
    self.atom_membership = Feature(shape=(None,), dtype=tf.int32)
    self.distance_membership_i = Feature(shape=(None,), dtype=tf.int32)
    self.distance_membership_j = Feature(shape=(None,), dtype=tf.int32)

    dtnn_embedding = DTNNEmbedding(
        n_embedding=self.n_embedding, in_layers=[self.atom_number])
    dtnn_layer1 = DTNNStep(
        n_embedding=self.n_embedding,
        n_distance=self.n_distance,
        in_layers=[
            dtnn_embedding, self.distance, self.distance_membership_i,
            self.distance_membership_j
        ])
    dtnn_layer2 = DTNNStep(
        n_embedding=self.n_embedding,
        n_distance=self.n_distance,
        in_layers=[
            dtnn_layer1, self.distance, self.distance_membership_i,
            self.distance_membership_j
        ])
    dtnn_gather = DTNNGather(
        n_embedding=self.n_embedding,
        layer_sizes=[self.n_hidden],
        n_outputs=self.n_tasks,
        output_activation=self.output_activation,
        in_layers=[dtnn_layer2, self.atom_membership])

    costs = []
    self.labels_fd = []
    for task in range(self.n_tasks):
      regression = DTNNExtract(task, in_layers=[dtnn_gather])
      self.add_output(regression)
      label = Label(shape=(None, 1))
      self.labels_fd.append(label)
      cost = L2Loss(in_layers=[label, regression])
      costs.append(cost)

    all_cost = Stack(in_layers=costs, axis=1)
    self.weights = Weights(shape=(None, self.n_tasks))
    loss = WeightedError(in_layers=[all_cost, self.weights])
    self.set_loss(loss)