#!/usr/bin/python import sys import deeplearn retval = deeplearn.load("result.nn") if retval != 0: print "Unable to load network. Error code " + str(retval) sys.quit() print("0,0"), if deeplearn.test([0.0,0.0])[0] > 0.5: print "1" else: print "0" print("1,0"), if deeplearn.test([1.0,0.0])[0] > 0.5: print "1" else: print "0" print("0,1"), if deeplearn.test([0.0,1.0])[0] > 0.5: print "1" else: print "0" print("1,1"), if deeplearn.test([1.0,1.0])[0] > 0.5: print "1"
#!/usr/bin/env python3 import sys import deeplearn retval = deeplearn.load("result.nn") if retval != 0: print("Unable to load network. Error code " + str(retval)) sys.quit() print("zero,zero"), if deeplearn.test(["zero","zero"])[0] > 0.5: print("1") else: print("0") print("one,zero"), if deeplearn.test(["one","zero"])[0] > 0.5: print("1") else: print("0") print("zero,one"), if deeplearn.test(["zero","one"])[0] > 0.5: print("1") else: print("0") print("one,one"), if deeplearn.test(["one","one"])[0] > 0.5: print("1")
import os.path import deeplearn import subprocess if len(sys.argv) < 2: print "Error: Specify an image filename" sys.exit(1) image_filename = sys.argv[1]; if not os.path.isfile(image_filename): print "Error: File does not exist" sys.exit(2) retval = deeplearn.load("result.nn") if retval != 0: print "Error: Unable to load trained neural network. Error code " + str(retval) sys.exit(3) p = subprocess.Popen(['./catmuzzle', '-f', image_filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = p.communicate() inputs = [float(i) for i in out.split(",")] print deeplearn.test(inputs) #if deeplearn.test(inputs)[0] > 0.5: # print "1" #else: # print "0"
#!/usr/bin/env python2 import deeplearn # Rather than showing numbers show the species names species = ["Iris-setosa", "Iris-versicolor", "Iris-virginica"] # Load the neural network deeplearn.load("result.nn") # These dimensions are similar to those which exist in the # data set, but are adjusted slightly so that the network # has never seen these exact values before print "Expected: " + species[0] deeplearn.test([5.44, 3.436, 1.667, 0.214]) print "Returned: " + species[deeplearn.getClass()] print "\nExpected: " + species[1] deeplearn.test([6.14, 2.75, 4.04, 1.32]) print "Returned: " + species[deeplearn.getClass()] print "\nExpected: " + species[2] deeplearn.test([6.71, 3.14, 5.92, 2.29]) print "Returned: " + species[deeplearn.getClass()]
#!/usr/bin/python import deeplearn # Rather than showing numbers show the species names species = ["Iris-setosa", "Iris-versicolor", "Iris-virginica"] # Load the neural network deeplearn.load("result.nn") # These dimensions are similar to those which exist in the # data set, but are adjusted slightly so that the network # has never seen these exact values before print "Expected: " + species[0] deeplearn.test([5.44, 3.436, 1.667, 0.214]) print "Returned: " + species[deeplearn.getClass()] print "\nExpected: " + species[1] deeplearn.test([6.14, 2.75, 4.04, 1.32]) print "Returned: " + species[deeplearn.getClass()] print "\nExpected: " + species[2] deeplearn.test([6.71, 3.14, 5.92, 2.29]) print "Returned: " + species[deeplearn.getClass()]
#!/usr/bin/python import sys import deeplearn retval = deeplearn.load("result.nn") if retval != 0: print "Unable to load network. Error code " + str(retval) sys.quit() print("zero,zero"), if deeplearn.test(["zero","zero"])[0] > 0.5: print "1" else: print "0" print("one,zero"), if deeplearn.test(["one","zero"])[0] > 0.5: print "1" else: print "0" print("zero,one"), if deeplearn.test(["zero","one"])[0] > 0.5: print "1" else: print "0" print("one,one"), if deeplearn.test(["one","one"])[0] > 0.5: print "1"
#!/usr/bin/python import sys import deeplearn retval = deeplearn.load("result.nn") if retval != 0: print "Unable to load network. Error code " + str(retval) sys.quit() print("0,0"), if deeplearn.test([0.0, 0.0])[0] > 0.5: print "1" else: print "0" print("1,0"), if deeplearn.test([1.0, 0.0])[0] > 0.5: print "1" else: print "0" print("0,1"), if deeplearn.test([0.0, 1.0])[0] > 0.5: print "1" else: print "0" print("1,1"), if deeplearn.test([1.0, 1.0])[0] > 0.5: print "1"