Beispiel #1
0
    def build(self, input_d, rot_mat, natoms, reuse=None, suffix=''):
        start_index = 0
        inputs = tf.cast(
            tf.reshape(input_d, [-1, self.dim_descrpt * natoms[0]]),
            self.fitting_precision)
        rot_mat = tf.reshape(rot_mat, [-1, self.dim_rot_mat * natoms[0]])

        count = 0
        for type_i in range(self.ntypes):
            # cut-out inputs
            inputs_i = tf.slice(inputs, [0, start_index * self.dim_descrpt],
                                [-1, natoms[2 + type_i] * self.dim_descrpt])
            inputs_i = tf.reshape(inputs_i, [-1, self.dim_descrpt])
            rot_mat_i = tf.slice(rot_mat, [0, start_index * self.dim_rot_mat],
                                 [-1, natoms[2 + type_i] * self.dim_rot_mat])
            rot_mat_i = tf.reshape(rot_mat_i, [-1, self.dim_rot_mat_1, 3])
            start_index += natoms[2 + type_i]
            if not type_i in self.sel_type:
                continue
            layer = inputs_i
            for ii in range(0, len(self.n_neuron)):
                if ii >= 1 and self.n_neuron[ii] == self.n_neuron[ii - 1]:
                    layer += one_layer(
                        layer,
                        self.n_neuron[ii],
                        name='layer_' + str(ii) + '_type_' + str(type_i) +
                        suffix,
                        reuse=reuse,
                        seed=self.seed,
                        use_timestep=self.resnet_dt,
                        activation_fn=self.fitting_activation_fn,
                        precision=self.fitting_precision)
                else:
                    layer = one_layer(layer,
                                      self.n_neuron[ii],
                                      name='layer_' + str(ii) + '_type_' +
                                      str(type_i) + suffix,
                                      reuse=reuse,
                                      seed=self.seed,
                                      activation_fn=self.fitting_activation_fn,
                                      precision=self.fitting_precision)
            if self.fit_diag:
                bavg = np.zeros(self.dim_rot_mat_1)
                # bavg[0] = self.avgeig[0]
                # bavg[1] = self.avgeig[1]
                # bavg[2] = self.avgeig[2]
                # (nframes x natoms) x naxis
                final_layer = one_layer(layer,
                                        self.dim_rot_mat_1,
                                        activation_fn=None,
                                        name='final_layer_type_' +
                                        str(type_i) + suffix,
                                        reuse=reuse,
                                        seed=self.seed,
                                        bavg=bavg,
                                        precision=self.fitting_precision)
                # (nframes x natoms) x naxis
                final_layer = tf.reshape(final_layer, [
                    tf.shape(inputs)[0] * natoms[2 + type_i],
                    self.dim_rot_mat_1
                ])
                # (nframes x natoms) x naxis x naxis
                final_layer = tf.matrix_diag(final_layer)
            else:
                bavg = np.zeros(self.dim_rot_mat_1 * self.dim_rot_mat_1)
                # bavg[0*self.dim_rot_mat_1+0] = self.avgeig[0]
                # bavg[1*self.dim_rot_mat_1+1] = self.avgeig[1]
                # bavg[2*self.dim_rot_mat_1+2] = self.avgeig[2]
                # (nframes x natoms) x (naxis x naxis)
                final_layer = one_layer(
                    layer,
                    self.dim_rot_mat_1 * self.dim_rot_mat_1,
                    activation_fn=None,
                    name='final_layer_type_' + str(type_i) + suffix,
                    reuse=reuse,
                    seed=self.seed,
                    bavg=bavg,
                    precision=self.fitting_precision)
                # (nframes x natoms) x naxis x naxis
                final_layer = tf.reshape(final_layer, [
                    tf.shape(inputs)[0] * natoms[2 + type_i],
                    self.dim_rot_mat_1, self.dim_rot_mat_1
                ])
                # (nframes x natoms) x naxis x naxis
                final_layer = final_layer + tf.transpose(final_layer,
                                                         perm=[0, 2, 1])
            # (nframes x natoms) x naxis x 3(coord)
            final_layer = tf.matmul(final_layer, rot_mat_i)
            # (nframes x natoms) x 3(coord) x 3(coord)
            final_layer = tf.matmul(rot_mat_i, final_layer, transpose_a=True)
            # nframes x natoms x 3 x 3
            final_layer = tf.reshape(
                final_layer, [tf.shape(inputs)[0], natoms[2 + type_i], 3, 3])
            # shift and scale
            sel_type_idx = self.sel_type.index(type_i)
            final_layer = final_layer * self.scale[sel_type_idx]
            final_layer = final_layer + self.diag_shift[sel_type_idx] * tf.eye(
                3,
                batch_shape=[tf.shape(inputs)[0], natoms[2 + type_i]],
                dtype=global_tf_float_precision)

            # concat the results
            if count == 0:
                outs = final_layer
            else:
                outs = tf.concat([outs, final_layer], axis=1)
            count += 1

        return tf.cast(tf.reshape(outs, [-1]), global_tf_float_precision)
Beispiel #2
0
    def build (self, 
               input_d : tf.Tensor,
               rot_mat : tf.Tensor,
               natoms : tf.Tensor,
               reuse : bool = None,
               suffix : str = '') :
        """
        Build the computational graph for fitting net
        
        Parameters
        ----------
        input_d
                The input descriptor
        rot_mat
                The rotation matrix from the descriptor.
        natoms
                The number of atoms. This tensor has the length of Ntypes + 2
                natoms[0]: number of local atoms
                natoms[1]: total number of atoms held by this processor
                natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
        reuse
                The weights in the networks should be reused when get the variable.
        suffix
                Name suffix to identify this descriptor

        Returns
        -------
        atomic_polar
                The atomic polarizability        
        """
        start_index = 0
        inputs = tf.reshape(input_d, [-1, self.dim_descrpt * natoms[0]])
        rot_mat = tf.reshape(rot_mat, [-1, self.dim_rot_mat * natoms[0]])

        count = 0
        outs_list = []
        for type_i in range(self.ntypes):
            # cut-out inputs
            inputs_i = tf.slice (inputs,
                                 [ 0, start_index*      self.dim_descrpt],
                                 [-1, natoms[2+type_i]* self.dim_descrpt] )
            inputs_i = tf.reshape(inputs_i, [-1, self.dim_descrpt])
            rot_mat_i = tf.slice (rot_mat,
                                  [ 0, start_index*      self.dim_rot_mat],
                                  [-1, natoms[2+type_i]* self.dim_rot_mat] )
            rot_mat_i = tf.reshape(rot_mat_i, [-1, self.dim_rot_mat_1, 3])
            start_index += natoms[2+type_i]
            if not type_i in self.sel_type :
                continue
            layer = inputs_i
            for ii in range(0,len(self.n_neuron)) :
                if ii >= 1 and self.n_neuron[ii] == self.n_neuron[ii-1] :
                    layer+= one_layer(layer, self.n_neuron[ii], name='layer_'+str(ii)+'_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, use_timestep = self.resnet_dt, activation_fn = self.fitting_activation_fn, precision = self.fitting_precision, uniform_seed = self.uniform_seed, initial_variables = self.fitting_net_variables, mixed_prec = self.mixed_prec)
                else :
                    layer = one_layer(layer, self.n_neuron[ii], name='layer_'+str(ii)+'_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, activation_fn = self.fitting_activation_fn, precision = self.fitting_precision, uniform_seed = self.uniform_seed, initial_variables = self.fitting_net_variables, mixed_prec = self.mixed_prec)
                if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift
            if self.fit_diag :
                bavg = np.zeros(self.dim_rot_mat_1)
                # bavg[0] = self.avgeig[0]
                # bavg[1] = self.avgeig[1]
                # bavg[2] = self.avgeig[2]
                # (nframes x natoms) x naxis
                final_layer = one_layer(layer, self.dim_rot_mat_1, activation_fn = None, name='final_layer_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, bavg = bavg, precision = self.fitting_precision, uniform_seed = self.uniform_seed, initial_variables = self.fitting_net_variables, mixed_prec = self.mixed_prec, final_layer = True)
                if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift
                # (nframes x natoms) x naxis
                final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0] * natoms[2+type_i], self.dim_rot_mat_1])
                # (nframes x natoms) x naxis x naxis
                final_layer = tf.matrix_diag(final_layer)                
            else :
                bavg = np.zeros(self.dim_rot_mat_1*self.dim_rot_mat_1)
                # bavg[0*self.dim_rot_mat_1+0] = self.avgeig[0]
                # bavg[1*self.dim_rot_mat_1+1] = self.avgeig[1]
                # bavg[2*self.dim_rot_mat_1+2] = self.avgeig[2]
                # (nframes x natoms) x (naxis x naxis)
                final_layer = one_layer(layer, self.dim_rot_mat_1*self.dim_rot_mat_1, activation_fn = None, name='final_layer_type_'+str(type_i)+suffix, reuse=reuse, seed = self.seed, bavg = bavg, precision = self.fitting_precision, uniform_seed = self.uniform_seed, initial_variables = self.fitting_net_variables, mixed_prec = self.mixed_prec, final_layer = True)
                if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift
                # (nframes x natoms) x naxis x naxis
                final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0] * natoms[2+type_i], self.dim_rot_mat_1, self.dim_rot_mat_1])
                # (nframes x natoms) x naxis x naxis
                final_layer = final_layer + tf.transpose(final_layer, perm = [0,2,1])
            # (nframes x natoms) x naxis x 3(coord)
            final_layer = tf.matmul(final_layer, rot_mat_i)
            # (nframes x natoms) x 3(coord) x 3(coord)
            final_layer = tf.matmul(rot_mat_i, final_layer, transpose_a = True)
            # nframes x natoms x 3 x 3
            final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0], natoms[2+type_i], 3, 3])
            # shift and scale
            sel_type_idx = self.sel_type.index(type_i)
            final_layer = final_layer * self.scale[sel_type_idx]
            final_layer = final_layer + self.constant_matrix[sel_type_idx] * tf.eye(3, batch_shape=[tf.shape(inputs)[0], natoms[2+type_i]], dtype = GLOBAL_TF_FLOAT_PRECISION)

            # concat the results
            outs_list.append(final_layer)
            count += 1
        outs = tf.concat(outs_list, axis = 1)
        
        tf.summary.histogram('fitting_net_output', outs)
        return tf.reshape(outs, [-1])