Beispiel #1
0
def test_conv3d():
    """
    Test the layer.Conv3d class and its default attributes.
    """

    conv3d = layer.Conv3d(8)

    assert isinstance(conv3d._conv3d, tf.keras.layers.Conv3D)
    assert conv3d._conv3d.kernel_size == (3, 3, 3)
    assert conv3d._conv3d.strides == (1, 1, 1)
    assert conv3d._conv3d.padding == "same"
    assert isinstance(conv3d._conv3d.activation, type(tf.keras.activations.linear))
    assert conv3d._conv3d.use_bias is True
Beispiel #2
0
def test_conv3d():
    """
    Test the layer.Conv3d class and its default attributes. No need to test the call() function since its
    a tensorflow class
    """

    conv3d = layer.Conv3d(8)

    assert isinstance(conv3d._conv3d, type(tf.keras.layers.Conv3D(8, 3)))
    assert conv3d._conv3d.kernel_size == (3, 3, 3)
    assert conv3d._conv3d.strides == (1, 1, 1)
    assert conv3d._conv3d.padding == "same"
    assert isinstance(conv3d._conv3d.activation,
                      type(tf.keras.activations.linear))
    assert conv3d._conv3d.use_bias is True
Beispiel #3
0
def test_localNetResidual3dBlock():
    """
    Test the layer.LocalNetResidual3dBlock class, its default attributes and its call() function. No need to test
    the call() function since its a concatenation of tensorflow classes.
    """

    # Test __init__()
    conv3dBlock = layer.LocalNetResidual3dBlock(8)

    assert isinstance(conv3dBlock._conv3d, type(layer.Conv3d(8)))

    assert conv3dBlock._conv3d._conv3d.kernel_size == (3, 3, 3)
    assert conv3dBlock._conv3d._conv3d.strides == (1, 1, 1)
    assert conv3dBlock._conv3d._conv3d.padding == "same"
    assert conv3dBlock._conv3d._conv3d.use_bias is False

    assert isinstance(conv3dBlock._act._act, type(tf.keras.activations.relu))
    assert isinstance(conv3dBlock._norm._norm,
                      type(tf.keras.layers.BatchNormalization()))
Beispiel #4
0
def test_residual3dBlock():
    """
    Test the layer.Residual3dBlock class and its default attributes. No need to test the call() function since a
    concatenation of tensorflow classes
    """
    res3dBlock = layer.Residual3dBlock(8)

    assert isinstance(res3dBlock._conv3d_block, type(layer.Conv3dBlock(8)))
    assert res3dBlock._conv3d_block._conv3d._conv3d.kernel_size == (3, 3, 3)
    assert res3dBlock._conv3d_block._conv3d._conv3d.strides == (1, 1, 1)

    assert isinstance(res3dBlock._conv3d, type(layer.Conv3d(8)))
    assert res3dBlock._conv3d._conv3d.use_bias is False
    assert res3dBlock._conv3d._conv3d.kernel_size == (3, 3, 3)
    assert res3dBlock._conv3d._conv3d.strides == (1, 1, 1)

    assert isinstance(res3dBlock._act._act, type(tf.keras.activations.relu))
    assert isinstance(res3dBlock._norm._norm,
                      type(tf.keras.layers.BatchNormalization()))
Beispiel #5
0
def test_init_conv3dWithResize():
    """
    Test the layer.Conv3dWithResize class, its default attributes and it's call function.
    """
    batch_size = 5
    channels = 4
    input_size = (32, 32, 16)
    output_size = (62, 62, 24)
    filters = 8

    input_tensor_size = (batch_size, ) + input_size + (channels, )
    output_tensor_size = (batch_size, ) + output_size + (filters, )

    model = layer.Conv3dWithResize(output_size, filters)

    assert model._output_shape == output_size
    assert isinstance(model._conv3d, type(layer.Conv3d(filters)))

    # Pass an input of all zeros
    inputs = np.zeros(input_tensor_size)
    #  Get outputs by calling
    output = model.call(inputs)
    #  Expected shape is (5, 1, 2, 3, 3)
    assert all(x == y for x, y in zip(output_tensor_size, output.shape))