Beispiel #1
0
def test_fit(deepspeech: DeepSpeech, generator: DataGenerator,
             config_path: str, alphabet_path: str, model_dir: str):
    # Test save best weights (overwrite the best result)
    weights_path = os.path.join(model_dir, 'weights_copy.hdf5')
    deepspeech.save(weights_path)
    distributed_weights = deepspeech.distributed_model.get_weights()
    model_checkpoint = deepspeech.callbacks[2]
    model_checkpoint.best_result = 0
    model_checkpoint.best_weights_path = weights_path

    history = deepspeech.fit(train_generator=generator,
                             dev_generator=generator,
                             epochs=2,
                             shuffle=False)
    assert type(history) == History

    # Test the returned model has `test_weights`
    deepspeech_weights = deepspeech.model.get_weights()
    new_deepspeech = DeepSpeech.construct(config_path, alphabet_path)
    new_deepspeech.load(model_checkpoint.best_weights_path)
    new_deepspeech_weights = new_deepspeech.model.get_weights()
    assert is_same(deepspeech_weights, new_deepspeech_weights)

    # Test that distributed model appropriate update weights
    new_distributed_weights = deepspeech.distributed_model.get_weights()
    assert is_same(distributed_weights, new_distributed_weights)
Beispiel #2
0
def test_save_load(deepspeech: DeepSpeech, config: Configuration,
                   config_path: str, alphabet_path: str, model_dir: str):
    weights_path = os.path.join(model_dir, 'weights.hdf5')
    model_weights = deepspeech.model.get_weights()
    deepspeech.save(weights_path)

    new_deepspeech = DeepSpeech.construct(config_path, alphabet_path)
    new_deepspeech.model = deepspeech.get_model(**config.model,
                                                is_gpu=False,
                                                random_state=123)
    new_model_weights = new_deepspeech.model.get_weights()
    assert not is_same(model_weights, new_model_weights)

    new_deepspeech.load(weights_path)
    new_model_weights = new_deepspeech.model.get_weights()
    assert is_same(model_weights, new_model_weights)