def vmp(graph, data, max_iter=100, tol=1e-4): q, visible = {}, {} for node in top_sort(graph)[::-1]: if node in data: visible[node] = T.to_float(data[node]) else: q[node] = initialize_node(node, {}) ordering = list(q.keys()) params = [q[var].get_parameters('natural') for var in ordering] prev_elbo = T.constant(float('inf')) def cond(i, elbo, prev_elbo, q): return T.logical_and(i < max_iter, abs(elbo - prev_elbo) > tol) def step(i, elbo, prev_elbo, q): prev_elbo = elbo q_vars = { var: var.__class__(param, 'natural') for var, param in zip(ordering, q) } q, elbo = message_passing(q_vars, visible) return i + 1, elbo, prev_elbo, [ q[var].get_parameters('natural') for var in ordering ] i, elbo, prev_elbo, q = T.while_loop(cond, step, [0, float('inf'), 0.0, params]) return { var: var.__class__(param, 'natural') for var, param in zip(ordering, q) }, elbo
def posterior_dynamics(self, q_X, q_A, data_strength=1.0, max_iter=200, tol=1e-3): if self.smooth: if self.time_varying: prior_dyn = stats.MNIW( self.A_variational.get_parameters('natural'), 'natural') else: natparam = self.A_variational.get_parameters('natural') prior_dyn = stats.MNIW([ T.tile(natparam[0][None], [self.horizon - 1, 1, 1]), T.tile(natparam[1][None], [self.horizon - 1, 1, 1]), T.tile(natparam[2][None], [self.horizon - 1, 1, 1]), T.tile(natparam[3][None], [self.horizon - 1]), ], 'natural') state_prior = stats.Gaussian([T.eye(self.ds), T.zeros(self.ds)]) aaT, a = stats.Gaussian.unpack( q_A.expected_sufficient_statistics()) aaT, a = aaT[:, :-1], a[:, :-1] ds, da = self.ds, self.da initial_dyn_natparam = prior_dyn.get_parameters('natural') initial_X_natparam = stats.LDS( (self.sufficient_statistics(), state_prior, q_X, q_A.expected_value(), self.horizon), 'internal').get_parameters('natural') def em(i, q_dyn_natparam, q_X_natparam, _, curr_elbo): q_X_ = stats.LDS(q_X_natparam, 'natural') ess = q_X_.expected_sufficient_statistics() batch_size = T.shape(ess)[0] yyT = ess[..., :-1, ds:2 * ds, ds:2 * ds] xxT = ess[..., :-1, :ds, :ds] yxT = ess[..., :-1, ds:2 * ds, :ds] x = ess[..., :-1, -1, :ds] y = ess[..., :-1, -1, ds:2 * ds] xaT = T.outer(x, a) yaT = T.outer(y, a) xaxaT = T.concatenate([ T.concatenate([xxT, xaT], -1), T.concatenate([T.matrix_transpose(xaT), aaT], -1), ], -2) ess = [ yyT, T.concatenate([yxT, yaT], -1), xaxaT, T.ones([batch_size, self.horizon - 1]) ] q_dyn_natparam = [ T.sum(a, [0]) * data_strength + b for a, b in zip(ess, initial_dyn_natparam) ] q_dyn_ = stats.MNIW(q_dyn_natparam, 'natural') q_stats = q_dyn_.expected_sufficient_statistics() p_X = stats.LDS((q_stats, state_prior, None, q_A.expected_value(), self.horizon)) q_X_ = stats.LDS((q_stats, state_prior, q_X, q_A.expected_value(), self.horizon)) elbo = (T.sum(stats.kl_divergence(q_X_, p_X)) + T.sum(stats.kl_divergence(q_dyn_, prior_dyn))) return i + 1, q_dyn_.get_parameters( 'natural'), q_X_.get_parameters('natural'), curr_elbo, elbo def cond(i, _, __, prev_elbo, curr_elbo): with T.core.control_dependencies([T.core.print(curr_elbo)]): prev_elbo = T.core.identity(prev_elbo) return T.logical_and( T.abs(curr_elbo - prev_elbo) > tol, i < max_iter) result = T.while_loop( cond, em, [ 0, initial_dyn_natparam, initial_X_natparam, T.constant(-np.inf), T.constant(0.) ], back_prop=False) pd = stats.MNIW(result[1], 'natural') sigma, mu = pd.expected_value() q_X = stats.LDS(result[2], 'natural') return ((mu, sigma), pd.expected_sufficient_statistics()), (q_X, q_A) else: q_Xt = q_X.__class__([ q_X.get_parameters('regular')[0][:, :-1], q_X.get_parameters('regular')[1][:, :-1], ]) q_At = q_A.__class__([ q_A.get_parameters('regular')[0][:, :-1], q_A.get_parameters('regular')[1][:, :-1], ]) q_Xt1 = q_X.__class__([ q_X.get_parameters('regular')[0][:, 1:], q_X.get_parameters('regular')[1][:, 1:], ]) (XtAt_XtAtT, XtAt), (Xt1_Xt1T, Xt1) = self.get_statistics(q_Xt, q_At, q_Xt1) batch_size = T.shape(XtAt)[0] ess = [ Xt1_Xt1T, T.einsum('nha,nhb->nhba', XtAt, Xt1), XtAt_XtAtT, T.ones([batch_size, self.horizon - 1]) ] if self.time_varying: posterior = stats.MNIW([ T.sum(a, [0]) * data_strength + b for a, b in zip( ess, self.A_variational.get_parameters('natural')) ], 'natural') else: posterior = stats.MNIW([ T.sum(a, [0]) * data_strength + b[None] for a, b in zip( ess, self.A_variational.get_parameters('natural')) ], 'natural') Q, A = posterior.expected_value() return (A, Q), q_X