Beispiel #1
0
 def predict_level(self, level, test_x, k, labels_num):
     data_cnf, model_cnf = self.data_cnf, self.model_cnf
     model = self.models.get(level, None)
     if level == 0:
         logger.info(F'Predicting Level-{level}, Top: {k}')
         if model is None:
             model = Model(AttentionRNN, labels_num=labels_num, model_path=F'{self.model_path}-Level-{level}',
                           emb_init=self.emb_init, **data_cnf['model'], **model_cnf['model'])
         test_loader = DataLoader(MultiLabelDataset(test_x), model_cnf['predict']['batch_size'],
                                  num_workers=4)
         return model.predict(test_loader, k=k)
     else:
         if level == self.level - 1:
             groups = np.load(F'{self.groups_path}-Level-{level-1}.npy')
         else:
             groups = self.get_inter_groups(labels_num)
         group_scores, group_labels = self.predict_level(level - 1, test_x, self.top, len(groups))
         torch.cuda.empty_cache()
         logger.info(F'Predicting Level-{level}, Top: {k}')
         if model is None:
             model = XMLModel(network=FastAttentionRNN, labels_num=labels_num,
                              model_path=F'{self.model_path}-Level-{level}',
                              emb_init=self.emb_init, **data_cnf['model'], **model_cnf['model'])
         test_loader = DataLoader(XMLDataset(test_x, labels_num=labels_num,
                                             groups=groups, group_labels=group_labels, group_scores=group_scores),
                                  model_cnf['predict']['batch_size'], num_workers=4)
         return model.predict(test_loader, k=k)
Beispiel #2
0
def default_eval(
    data_cnf, model_cnf, data_name, model_name, model_path, emb_init,
    tree_id, output_suffix, dry_run,
):
    logger.info('Loading Test Set')
    mlb = get_mlb(data_cnf['labels_binarizer'])
    labels_num = len(mlb.classes_)
    test_x, _ = get_data(data_cnf['test']['texts'], None)
    logger.info(F'Size of Test Set: {len(test_x):,}')

    logger.info('Predicting')
    model_cnf['model'].pop('load_model', None)
    if 'cluster' not in model_cnf:
        test_loader = DataLoader(
            MultiLabelDataset(test_x),
            model_cnf['predict']['batch_size'],
            num_workers=4)

        if 'loss' in model_cnf:
            gamma = model_cnf['loss'].get('gamma', 1.0)
            loss_name = model_cnf['loss']['name']
        else:
            gamma = None
            loss_name = 'bce'

        model = Model(
            network=AttentionRNN, labels_num=labels_num,
            model_path=model_path, emb_init=emb_init,
            load_model=True, loss_name=loss_name, gamma=gamma,
            **data_cnf['model'], **model_cnf['model'])

        scores, labels = model.predict(test_loader, k=model_cnf['predict'].get('k', 100))
        labels = mlb.classes_[labels]
    else:
        model = FastAttentionXML(labels_num, data_cnf, model_cnf,
                                 tree_id, output_suffix)

        scores, labels = model.predict(test_x, model_cnf['predict'].get('k', 100))
        labels = mlb.classes_[labels]

    logger.info('Finish Predicting')
    score_path, label_path = output_res(data_cnf['output']['res'],
                                        f'{model_name}-{data_name}{tree_id}',
                                        scores, labels, output_suffix)

    log_results(score_path, label_path, dry_run)
Beispiel #3
0
def main(data_cnf, model_cnf, mode, reg):
    yaml = YAML(typ='safe')
    data_cnf, model_cnf = yaml.load(Path(data_cnf)), yaml.load(Path(model_cnf))
    model, model_name, data_name = None, model_cnf['name'], data_cnf['name']
    model_path = os.path.join(model_cnf['path'], F'{model_name}-{data_name}')
    emb_init = get_word_emb(data_cnf['embedding']['emb_init'])
    logger.info(F'Model Name: {model_name}')

    if mode is None or mode == 'train':
        logger.info('Loading Training and Validation Set')
        train_x, train_labels = get_data(data_cnf['train']['texts'],
                                         data_cnf['train']['labels'])
        if 'size' in data_cnf['valid']:
            random_state = data_cnf['valid'].get('random_state', 1240)
            train_x, valid_x, train_labels, valid_labels = train_test_split(
                train_x,
                train_labels,
                test_size=data_cnf['valid']['size'],
                random_state=random_state)
        else:
            valid_x, valid_labels = get_data(data_cnf['valid']['texts'],
                                             data_cnf['valid']['labels'])
        mlb = get_mlb(data_cnf['labels_binarizer'],
                      np.hstack((train_labels, valid_labels)))
        train_y, valid_y = mlb.transform(train_labels), mlb.transform(
            valid_labels)
        labels_num = len(mlb.classes_)
        logger.info(F'Number of Labels: {labels_num}')
        logger.info(F'Size of Training Set: {len(train_x)}')
        logger.info(F'Size of Validation Set: {len(valid_x)}')

        edges = set()
        if reg:
            classes = mlb.classes_.tolist()
            with open(data_cnf['hierarchy']) as fin:
                for line in fin:
                    data = line.strip().split()
                    p = data[0]
                    if p not in classes:
                        continue
                    p_id = classes.index(p)
                    for c in data[1:]:
                        if c not in classes:
                            continue
                        c_id = classes.index(c)
                        edges.add((p_id, c_id))
            logger.info(F'Number of Edges: {len(edges)}')

        logger.info('Training')
        train_loader = DataLoader(MultiLabelDataset(train_x, train_y),
                                  model_cnf['train']['batch_size'],
                                  shuffle=True,
                                  num_workers=4)
        valid_loader = DataLoader(MultiLabelDataset(valid_x,
                                                    valid_y,
                                                    training=True),
                                  model_cnf['valid']['batch_size'],
                                  num_workers=4)
        model = Model(network=MATCH,
                      labels_num=labels_num,
                      model_path=model_path,
                      emb_init=emb_init,
                      mode='train',
                      reg=reg,
                      hierarchy=edges,
                      **data_cnf['model'],
                      **model_cnf['model'])
        opt_params = {
            'lr': model_cnf['train']['learning_rate'],
            'betas':
            (model_cnf['train']['beta1'], model_cnf['train']['beta2']),
            'weight_decay': model_cnf['train']['weight_decay']
        }
        model.train(train_loader,
                    valid_loader,
                    opt_params=opt_params,
                    **model_cnf['train'])  # CHANGE: inserted opt_params
        logger.info('Finish Training')

    if mode is None or mode == 'eval':
        logger.info('Loading Test Set')
        mlb = get_mlb(data_cnf['labels_binarizer'])
        labels_num = len(mlb.classes_)
        test_x, _ = get_data(data_cnf['test']['texts'], None)
        logger.info(F'Size of Test Set: {len(test_x)}')

        logger.info('Predicting')
        test_loader = DataLoader(MultiLabelDataset(test_x),
                                 model_cnf['predict']['batch_size'],
                                 num_workers=4)
        if model is None:
            model = Model(network=MATCH,
                          labels_num=labels_num,
                          model_path=model_path,
                          emb_init=emb_init,
                          mode='eval',
                          **data_cnf['model'],
                          **model_cnf['model'])
        scores, labels = model.predict(test_loader,
                                       k=model_cnf['predict'].get('k', 100))
        logger.info('Finish Predicting')
        labels = mlb.classes_[labels]
        output_res(data_cnf['output']['res'], F'{model_name}-{data_name}',
                   scores, labels)
Beispiel #4
0
    def train_level(self, level, train_x, train_y, valid_x, valid_y):
        model_cnf, data_cnf = self.model_cnf, self.data_cnf
        if level == 0:
            while not os.path.exists(F'{self.groups_path}-Level-{level}.npy'):
                time.sleep(30)
            groups = np.load(F'{self.groups_path}-Level-{level}.npy')
            train_y, valid_y = self.get_mapping_y(groups, self.labels_num,
                                                  train_y, valid_y)
            labels_num = len(groups)
            train_loader = DataLoader(MultiLabelDataset(train_x, train_y),
                                      model_cnf['train'][level]['batch_size'],
                                      num_workers=4,
                                      shuffle=True)
            valid_loader = DataLoader(MultiLabelDataset(valid_x,
                                                        valid_y,
                                                        training=False),
                                      model_cnf['valid']['batch_size'],
                                      num_workers=4)
            model = Model(AttentionRNN,
                          labels_num=labels_num,
                          model_path=F'{self.model_path}-Level-{level}',
                          emb_init=self.emb_init,
                          **data_cnf['model'],
                          **model_cnf['model'])
            if not os.path.exists(model.model_path):
                logger.info(
                    F'Training Level-{level}, Number of Labels: {labels_num}')
                model.train(train_loader, valid_loader,
                            **model_cnf['train'][level])
                model.optimizer = None
                logger.info(F'Finish Training Level-{level}')

            self.models[level] = model

            logger.info(F'Generating Candidates for Level-{level+1}, '
                        F'Number of Labels: {labels_num}, Top: {self.top}')
            train_loader = DataLoader(MultiLabelDataset(train_x),
                                      model_cnf['valid']['batch_size'],
                                      num_workers=4)
            return train_y, model.predict(
                train_loader, k=self.top), model.predict(valid_loader,
                                                         k=self.top)
        else:
            train_group_y, train_group, valid_group = self.train_level(
                level - 1, train_x, train_y, valid_x, valid_y)
            torch.cuda.empty_cache()

            logger.info('Getting Candidates')
            _, group_labels = train_group
            group_candidates = np.empty((len(train_x), self.top), dtype=np.int)
            for i, labels in tqdm(enumerate(group_labels),
                                  leave=False,
                                  desc='Parents'):
                ys, ye = train_group_y.indptr[i], train_group_y.indptr[i + 1]
                positive = set(train_group_y.indices[ys:ye])
                if self.top >= len(positive):
                    candidates = positive
                    for la in labels:
                        if len(candidates) == self.top:
                            break
                        if la not in candidates:
                            candidates.add(la)
                else:
                    candidates = set()
                    for la in labels:
                        if la in positive:
                            candidates.add(la)
                        if len(candidates) == self.top:
                            break
                    if len(candidates) < self.top:
                        candidates = (list(candidates) +
                                      list(positive - candidates))[:self.top]
                group_candidates[i] = np.asarray(list(candidates))

            if level < self.level - 1:
                while not os.path.exists(
                        F'{self.groups_path}-Level-{level}.npy'):
                    time.sleep(30)
                groups = np.load(F'{self.groups_path}-Level-{level}.npy')
                train_y, valid_y = self.get_mapping_y(groups, self.labels_num,
                                                      train_y, valid_y)
                labels_num, last_groups = len(groups), self.get_inter_groups(
                    len(groups))
            else:
                groups, labels_num = None, train_y.shape[1]
                last_groups = np.load(
                    F'{self.groups_path}-Level-{level-1}.npy')

            train_loader = DataLoader(XMLDataset(
                train_x,
                train_y,
                labels_num=labels_num,
                groups=last_groups,
                group_labels=group_candidates),
                                      model_cnf['train'][level]['batch_size'],
                                      num_workers=4,
                                      shuffle=True)
            group_scores, group_labels = valid_group
            valid_loader = DataLoader(XMLDataset(valid_x,
                                                 valid_y,
                                                 training=False,
                                                 labels_num=labels_num,
                                                 groups=last_groups,
                                                 group_labels=group_labels,
                                                 group_scores=group_scores),
                                      model_cnf['valid']['batch_size'],
                                      num_workers=4)
            model = XMLModel(network=FastAttentionRNN,
                             labels_num=labels_num,
                             emb_init=self.emb_init,
                             model_path=F'{self.model_path}-Level-{level}',
                             **data_cnf['model'],
                             **model_cnf['model'])
            if not os.path.exists(model.model_path):
                logger.info(
                    F'Loading parameters of Level-{level} from Level-{level-1}'
                )
                last_model = self.get_last_models(level - 1)
                model.network.module.emb.load_state_dict(
                    last_model.module.emb.state_dict())
                model.network.module.lstm.load_state_dict(
                    last_model.module.lstm.state_dict())
                model.network.module.linear.load_state_dict(
                    last_model.module.linear.state_dict())
                logger.info(
                    F'Training Level-{level}, '
                    F'Number of Labels: {labels_num}, '
                    F'Candidates Number: {train_loader.dataset.candidates_num}'
                )
                model.train(train_loader, valid_loader,
                            **model_cnf['train'][level])
                model.optimizer = model.state = None
                logger.info(F'Finish Training Level-{level}')
            self.models[level] = model
            if level == self.level - 1:
                return
            logger.info(F'Generating Candidates for Level-{level+1}, '
                        F'Number of Labels: {labels_num}, Top: {self.top}')
            group_scores, group_labels = train_group
            train_loader = DataLoader(XMLDataset(train_x,
                                                 labels_num=labels_num,
                                                 groups=last_groups,
                                                 group_labels=group_labels,
                                                 group_scores=group_scores),
                                      model_cnf['valid']['batch_size'],
                                      num_workers=4)
            return train_y, model.predict(
                train_loader, k=self.top), model.predict(valid_loader,
                                                         k=self.top)
Beispiel #5
0
def main(data_cnf, model_cnf, mode, tree_id):
    tree_id = F'-Tree-{tree_id}' if tree_id is not None else ''
    yaml = YAML(typ='safe')
    data_cnf, model_cnf = yaml.load(Path(data_cnf)), yaml.load(Path(model_cnf))
    model, model_name, data_name = None, model_cnf['name'], data_cnf['name']
    model_path = os.path.join(model_cnf['path'], F'{model_name}-{data_name}{tree_id}')
    emb_init = get_word_emb(data_cnf['embedding']['emb_init'])
    logger.info(F'Model Name: {model_name}')

    if mode is None or mode == 'train':
        logger.info('Loading Training and Validation Set')
        train_x, train_labels = get_data(data_cnf['train']['texts'], data_cnf['train']['labels'])
        if 'size' in data_cnf['valid']:
            random_state = data_cnf['valid'].get('random_state', 1240)
            train_x, valid_x, train_labels, valid_labels = train_test_split(train_x, train_labels,
                                                                            test_size=data_cnf['valid']['size'],
                                                                            random_state=random_state)
        else:
            valid_x, valid_labels = get_data(data_cnf['valid']['texts'], data_cnf['valid']['labels'])
        mlb = get_mlb(data_cnf['labels_binarizer'], np.hstack((train_labels, valid_labels)))
        train_y, valid_y = mlb.transform(train_labels), mlb.transform(valid_labels)
        labels_num = len(mlb.classes_)
        logger.info(F'Number of Labels: {labels_num}')
        logger.info(F'Size of Training Set: {len(train_x)}')
        logger.info(F'Size of Validation Set: {len(valid_x)}')

        logger.info('Training')
        if 'cluster' not in model_cnf:
            train_loader = DataLoader(MultiLabelDataset(train_x, train_y),
                                      model_cnf['train']['batch_size'], shuffle=True, num_workers=4)
            valid_loader = DataLoader(MultiLabelDataset(valid_x, valid_y, training=False),
                                      model_cnf['valid']['batch_size'], num_workers=4)
            model = Model(network=AttentionRNN, labels_num=labels_num, model_path=model_path, emb_init=emb_init,
                          **data_cnf['model'], **model_cnf['model'])
            model.train(train_loader, valid_loader, **model_cnf['train'])
        else:
            model = FastAttentionXML(labels_num, data_cnf, model_cnf, tree_id)
            model.train(train_x, train_y, valid_x, valid_y, mlb)
        logger.info('Finish Training')

    if mode is None or mode == 'eval':
        logger.info('Loading Test Set')
        mlb = get_mlb(data_cnf['labels_binarizer'])
        labels_num = len(mlb.classes_)
        test_x, _ = get_data(data_cnf['test']['texts'], None)
        logger.info(F'Size of Test Set: {len(test_x)}')

        logger.info('Predicting')
        if 'cluster' not in model_cnf:
            test_loader = DataLoader(MultiLabelDataset(test_x), model_cnf['predict']['batch_size'],
                                     num_workers=4)
            if model is None:
                model = Model(network=AttentionRNN, labels_num=labels_num, model_path=model_path, emb_init=emb_init,
                              **data_cnf['model'], **model_cnf['model'])
            scores, labels = model.predict(test_loader, k=model_cnf['predict'].get('k', 100))
        else:
            if model is None:
                model = FastAttentionXML(labels_num, data_cnf, model_cnf, tree_id)
            scores, labels = model.predict(test_x)
        logger.info('Finish Predicting')
        labels = mlb.classes_[labels]
        output_res(data_cnf['output']['res'], F'{model_name}-{data_name}{tree_id}', scores, labels)
def spectral_clustering_train(
    data_cnf, data_cnf_path, model_cnf, model_cnf_path,
    emb_init, model_path, tree_id, output_suffix, dry_run,
):
    train_xs = []
    valid_xs = []
    train_labels_list = []
    valid_labels_list = []
    train_ys = []
    valid_ys = []
    mlb_list = []
    indices_list = []

    n_clusters = model_cnf['spectral_clustering']['num_clusters']
    n_components = model_cnf['spectral_clustering']['n_components']
    alg = model_cnf['spectral_clustering']['alg']
    size_min = model_cnf['spectral_clustering']['size_min']
    size_max = model_cnf['spectral_clustering']['size_max']

    train_x, train_labels = load_dataset(data_cnf)

    if 'cluster' not in model_cnf:
        mlb = get_mlb(data_cnf['labels_binarizer'], train_labels)
        train_y = mlb.transform(train_labels)

        logger.info('Build label adjacency matrix')
        adj = train_y.T @ train_y
        adj.setdiag(0)
        adj.eliminate_zeros()
        logger.info(f"Sparsity: {adj.count_nonzero() / adj.shape[0] ** 2}")
        clustering = MySpectralClustering(n_clusters=n_clusters, affinity='precomputed',
                                          n_components=n_components, n_init=1,
                                          size_min=size_min,
                                          size_max=size_max,
                                          assign_labels=alg, n_jobs=-1)
        logger.info('Start Spectral Clustering')
        clustering.fit(adj)
        logger.info('Finish Spectral Clustering')

        groups = [[] for _ in range(n_clusters)]
        for i, group in enumerate(clustering.labels_):
            groups[group].append(i)

        splitted_labels = []
        for indices in groups:
            splitted_labels.append(mlb.classes_[indices])

        for labels in splitted_labels:
            indices = get_splitted_samples(labels, train_labels)
            indices_list.append(indices)
            train_xs.append(train_x[indices])
            train_labels_list.append(train_labels[indices])

        if 'size' in data_cnf['valid']:
            for i, (train_x, train_labels) in enumerate(zip(train_xs, train_labels_list)):
                valid_size = data_cnf['valid']['size']
                if len(train_x) * 0.8 > len(train_x) - valid_size:
                    valid_size = 0.2
                train_x, valid_x, train_labels, valid_labels = train_test_split(
                    train_x, train_labels, test_size=valid_size,
                )
                train_xs[i] = train_x
                train_labels_list[i] = train_labels
                valid_xs.append(valid_x)
                valid_labels_list.append(valid_labels)

        else:
            raise Exception("Setting valid set explicitly is not "
                            "supported spectral clustering mode.")

        labels_binarizer_path = data_cnf['labels_binarizer']
        suffix = output_suffix.upper().replace('-', '_')
        for i, labels in enumerate(splitted_labels):
            filename = f"{labels_binarizer_path}_{suffix}_{i}"
            mlb_tree = get_mlb(filename, labels[None, ...], force=True)
            mlb_list.append(mlb_tree)
            logger.info(f"Number of labels of cluster {i}: {len(labels):,}")
            logger.info(f"Number of Training Set of cluster {i}: {len(train_xs[i]):,}")
            logger.info(f"Number of Validation Set of cluster {i}: {len(valid_xs[i]):,}")

            with redirect_stderr(None):
                train_y = mlb_tree.transform(train_labels_list[i])
                valid_y = mlb_tree.transform(valid_labels_list[i])

            train_ys.append(train_y)
            valid_ys.append(valid_y)

    else:
        if 'size' in data_cnf['valid']:
            train_x, valid_x, train_labels, valid_labels = train_test_split(
                train_x, train_labels, test_size=data_cnf['valid']['size'],
            )

        else:
            valid_x, valid_labels = get_data(data_cnf['valid']['texts'], data_cnf['valid']['labels'])

        mlb = get_mlb(data_cnf['labels_binarizer'], np.hstack((
            train_labels, valid_labels,
        )))

        train_y, valid_y = mlb.transform(train_labels), mlb.transform(valid_labels)


    logger.info('Training')
    if 'cluster' not in model_cnf:
        for i, (train_x, train_y, valid_x, valid_y) in enumerate(zip(
            train_xs, train_ys, valid_xs, valid_ys,
        )):
            train_loader = DataLoader(
                MultiLabelDataset(train_x, train_y),
                model_cnf['train']['batch_size'], shuffle=True, num_workers=4)
            valid_loader = DataLoader(
                MultiLabelDataset(valid_x, valid_y, training=False),
                model_cnf['valid']['batch_size'], num_workers=4)
            model = Model(
                network=AttentionRNN, labels_num=len(mlb_list[i].classes_),
                model_path=f'{model_path}-{i}', emb_init=emb_init,
                **data_cnf['model'], **model_cnf['model'])

            if not dry_run:
                logger.info(f"Start Training Cluster {i}")
                model.train(train_loader, valid_loader, **model_cnf['train'])
                logger.info(f"Finish Training Cluster {i}")
            else:
                model.save_model()

    else:
        model = FastAttentionXML(
            len(mlb.classes_), data_cnf, model_cnf, tree_id, output_suffix,
        )

        if not dry_run:
            model.train(train_x, train_y, valid_x, valid_y, mlb)

    log_config(data_cnf_path, model_cnf_path, dry_run)
def spectral_clustering_eval(
    data_cnf, model_cnf, data_name, model_name, model_path, emb_init,
    tree_id, output_suffix, dry_run,
):
    mlb_list = []
    n_clusters = model_cnf['spectral_clustering']['num_clusters']
    labels_binarizer_path = data_cnf['labels_binarizer']
    scores_list = []
    labels_list = []

    logger.info('Loading Test Set')
    test_x, _ = get_data(data_cnf['test']['texts'], None)
    logger.info(F'Size of Test Set: {len(test_x):,}')

    logger.info('Predicting')
    if 'cluster' not in model_cnf:
        suffix = output_suffix.upper().replace('-', '_')
        for i in range(n_clusters):
            filename = f"{labels_binarizer_path}_{suffix}_{i}"
            mlb_tree = get_mlb(filename)
            mlb_list.append(mlb_tree)

        test_loader = DataLoader(
            MultiLabelDataset(test_x),
            model_cnf['predict']['batch_size'],
            num_workers=4)

        for i, mlb in enumerate(mlb_list):
            logger.info(f"Predicting Cluster {i}")
            labels_num = len(mlb.classes_)
            k = model_cnf['predict'].get('k', 100) // n_clusters

            model = Model(
                network=AttentionRNN, labels_num=labels_num,
                model_path=f'{model_path}-{i}', emb_init=emb_init,
                load_model=True,
                **data_cnf['model'], **model_cnf['model'])

            scores, labels = model.predict(test_loader, k=k)
            scores_list.append(scores)
            labels_list.append(mlb.classes_[labels])
            logger.info(f"Finish Prediting Cluster {i}")

        scores = np.hstack(scores_list)
        labels = np.hstack(labels_list)

        i = np.arange(len(scores))[:, None]
        j = np.argsort(scores)[:, ::-1]

        scores = scores[i, j]
        labels = labels[i, j]

    else:
        mlb = get_mlb(data_cnf['labels_binarizer'])
        model = FastAttentionXML(len(mlb.classes_), data_cnf, model_cnf,
                                 tree_id, output_suffix)

        scores, labels = model.predict(test_x, model_cnf['predict'].get('k', 100))
        labels = mlb.classes_[labels]

    logger.info('Finish Predicting')
    score_path, label_path = output_res(data_cnf['output']['res'],
                                        f'{model_name}-{data_name}{tree_id}',
                                        scores, labels, output_suffix)

    log_results(score_path, label_path, dry_run)
Beispiel #8
0
def default_train(
    data_cnf, data_cnf_path, model_cnf, model_cnf_path,
    emb_init, model_path, tree_id, output_suffix, dry_run,
):
    train_x, train_labels = load_dataset(data_cnf)

    if 'size' in data_cnf['valid']:
        train_x, valid_x, train_labels, valid_labels = train_test_split(
            train_x, train_labels, test_size=data_cnf['valid']['size'],
        )

    else:
        valid_x, valid_labels = get_data(data_cnf['valid']['texts'], data_cnf['valid']['labels'])

    mlb = get_mlb(data_cnf['labels_binarizer'], np.hstack((
        train_labels, valid_labels,
    )))
    freq = mlb.transform(np.hstack([train_labels, valid_labels])).sum(axis=0).A1
    train_y, valid_y = mlb.transform(train_labels), mlb.transform(valid_labels)
    labels_num = len(mlb.classes_)
    logger.info(F'Number of Labels: {labels_num}')
    logger.info(F'Size of Training Set: {len(train_x):,}')
    logger.info(F'Size of Validation Set: {len(valid_x):,}')

    logger.info('Training')
    if 'cluster' not in model_cnf:
        if 'propensity' in data_cnf:
            a = data_cnf['propensity']['a']
            b = data_cnf['propensity']['b']
            pos_weight = get_inv_propensity(train_y, a, b)
        else:
            pos_weight = None

        train_loader = DataLoader(
            MultiLabelDataset(train_x, train_y),
            model_cnf['train']['batch_size'], shuffle=True, num_workers=4)
        valid_loader = DataLoader(
            MultiLabelDataset(valid_x, valid_y, training=False),
            model_cnf['valid']['batch_size'], num_workers=4)

        if 'loss' in model_cnf:
            gamma = model_cnf['loss'].get('gamma', 2.0)
            loss_name = model_cnf['loss']['name']
        else:
            gamma = None
            loss_name = 'bce'

        model = Model(
            network=AttentionRNN, labels_num=labels_num, model_path=model_path,
            emb_init=emb_init, pos_weight=pos_weight, loss_name=loss_name, gamma=gamma,
            freq=freq, **data_cnf['model'], **model_cnf['model'])

        if not dry_run:
            model.train(train_loader, valid_loader, mlb=mlb, **model_cnf['train'])
        else:
            model.save_model()

    else:
        model = FastAttentionXML(labels_num, data_cnf, model_cnf, tree_id, output_suffix)

        if not dry_run:
            model.train(train_x, train_y, valid_x, valid_y, mlb)

    log_config(data_cnf_path, model_cnf_path, dry_run)
Beispiel #9
0
def main(data_cnf, model_cnf, mode):
    model_name = os.path.split(model_cnf)[1].split(".")[0]
    yaml = YAML(typ='safe')
    data_cnf, model_cnf = yaml.load(Path(data_cnf)), yaml.load(Path(model_cnf))

    # 設定log檔案位置
    logfile("./logs/logfile_{0}_cornet_{1}_cornet_dim_{2}.log".format(
        model_name, model_cnf['model']['n_cornet_blocks'],
        model_cnf['model']['cornet_dim']))

    model, model_name, data_name = None, model_cnf['name'], data_cnf['name']
    model_path = os.path.join(
        model_cnf['path'],
        F'{model_name}-{data_name}-{model_cnf["model"]["n_cornet_blocks"]}-{model_cnf["model"]["cornet_dim"]}'
    )
    emb_init = get_word_emb(data_cnf['embedding']['emb_init'])
    logger.info(F'Model Name: {model_name}')
    # summary(model_dict[model_name])
    if mode is None or mode == 'train':
        logger.info('Loading Training and Validation Set')
        train_x, train_labels = get_data(data_cnf['train']['texts'],
                                         data_cnf['train']['labels'])
        if 'size' in data_cnf['valid']:
            random_state = data_cnf['valid'].get('random_state', 1240)
            train_x, valid_x, train_labels, valid_labels = train_test_split(
                train_x,
                train_labels,
                test_size=data_cnf['valid']['size'],
                random_state=random_state)
        else:
            valid_x, valid_labels = get_data(data_cnf['valid']['texts'],
                                             data_cnf['valid']['labels'])
        mlb = get_mlb(data_cnf['labels_binarizer'],
                      np.hstack((train_labels, valid_labels)))
        train_y, valid_y = mlb.transform(train_labels), mlb.transform(
            valid_labels)
        labels_num = len(mlb.classes_)
        logger.info(F'Number of Labels: {labels_num}')
        logger.info(F'Size of Training Set: {len(train_x)}')
        logger.info(F'Size of Validation Set: {len(valid_x)}')

        logger.info('Training')
        train_loader = DataLoader(MultiLabelDataset(train_x, train_y),
                                  model_cnf['train']['batch_size'],
                                  shuffle=True,
                                  num_workers=4)
        valid_loader = DataLoader(MultiLabelDataset(valid_x,
                                                    valid_y,
                                                    training=True),
                                  model_cnf['valid']['batch_size'],
                                  num_workers=4)

        if 'gpipe' not in model_cnf:
            model = Model(network=model_dict[model_name],
                          labels_num=labels_num,
                          model_path=model_path,
                          emb_init=emb_init,
                          **data_cnf['model'],
                          **model_cnf['model'])
        else:
            model = GPipeModel(model_name,
                               labels_num=labels_num,
                               model_path=model_path,
                               emb_init=emb_init,
                               **data_cnf['model'],
                               **model_cnf['model'])
        loss, p1, p5 = model.train(train_loader, valid_loader,
                                   **model_cnf['train'])
        np.save(
            model_cnf['np_loss'] + "{0}_cornet_{1}_cornet_dim_{2}.npy".format(
                model_name, model_cnf['model']['n_cornet_blocks'],
                model_cnf['model']['cornet_dim']), loss)
        np.save(
            model_cnf['np_p1'] + "{0}_cornet_{1}_cornet_dim_{2}.npy".format(
                model_name, model_cnf['model']['n_cornet_blocks'],
                model_cnf['model']['cornet_dim']), p1)
        np.save(
            model_cnf['np_p5'] + "{0}_cornet_{1}_cornet_dim_{2}.npy".format(
                model_name, model_cnf['model']['n_cornet_blocks'],
                model_cnf['model']['cornet_dim']), p5)
        logger.info('Finish Training')

    if mode is None or mode == 'eval':
        logger.info('Loading Test Set')
        logger.info('model path: ', model_path)
        mlb = get_mlb(data_cnf['labels_binarizer'])
        labels_num = len(mlb.classes_)
        test_x, _ = get_data(data_cnf['test']['texts'], None)
        logger.info(F'Size of Test Set: {len(test_x)}')

        logger.info('Predicting')
        test_loader = DataLoader(MultiLabelDataset(test_x),
                                 model_cnf['predict']['batch_size'],
                                 num_workers=4)
        if 'gpipe' not in model_cnf:
            if model is None:
                model = Model(network=model_dict[model_name],
                              labels_num=labels_num,
                              model_path=model_path,
                              emb_init=emb_init,
                              **data_cnf['model'],
                              **model_cnf['model'])
        else:
            if model is None:
                model = GPipeModel(model_name,
                                   labels_num=labels_num,
                                   model_path=model_path,
                                   emb_init=emb_init,
                                   **data_cnf['model'],
                                   **model_cnf['model'])
        scores, labels = model.predict(test_loader,
                                       k=model_cnf['predict'].get('k', 3801))
        logger.info('Finish Predicting')
        labels = mlb.classes_[labels]
        output_res(data_cnf['output']['res'], F'{model_name}-{data_name}',
                   scores, labels)
Beispiel #10
0
def splitting_head_tail_train(
    data_cnf,
    data_cnf_path,
    model_cnf,
    model_cnf_path,
    emb_init,
    model_path,
    tree_id,
    output_suffix,
    dry_run,
    split_ratio,
):
    train_x, train_labels = load_dataset(data_cnf)

    logger.info(f'Split head and tail labels: {split_ratio}')
    head_labels, head_labels_i, tail_labels, tail_labels_i = get_head_tail_labels(
        train_labels,
        split_ratio,
    )

    train_h_x = train_x[head_labels_i]
    train_h_labels = train_labels[head_labels_i]

    train_t_x = train_x[tail_labels_i]
    train_t_labels = train_labels[tail_labels_i]

    if 'size' in data_cnf['valid']:
        valid_size = data_cnf['valid']['size']
        train_h_x, valid_h_x, train_h_labels, valid_h_labels = train_test_split(
            train_h_x,
            train_h_labels,
            test_size=valid_size if len(train_h_x) > 2 * valid_size else 0.1,
        )

        train_t_x, valid_t_x, train_t_labels, valid_t_labels = train_test_split(
            train_t_x,
            train_t_labels,
            test_size=valid_size if len(train_t_x) > 2 * valid_size else 0.1,
        )

    else:
        valid_x, valid_labels = get_data(data_cnf['valid']['texts'],
                                         data_cnf['valid']['labels'])
        valid_h_labels_i, valid_t_labels_i = get_head_tail_samples(
            head_labels,
            tail_labels,
            valid_labels,
        )
        valid_t_x = valid_x[valid_h_labels_i]
        valid_h_x = valid_x[valid_t_labels_i]
        valid_h_labels = valid_x[valid_h_labels_i]
        valid_t_labels = valid_x[valid_t_labels_i]

    labels_binarizer_path = data_cnf['labels_binarizer']
    mlb_h = get_mlb(f"{labels_binarizer_path}_h_{split_ratio}",
                    head_labels[None, ...])
    mlb_t = get_mlb(f"{labels_binarizer_path}_t_{split_ratio}",
                    tail_labels[None, ...])

    with redirect_stderr(None):
        train_h_y = mlb_h.transform(train_h_labels)
        valid_h_y = mlb_h.transform(valid_h_labels)
        train_t_y = mlb_t.transform(train_t_labels)
        valid_t_y = mlb_t.transform(valid_t_labels)

    logger.info(f'Number of Head Labels: {len(head_labels):,}')
    logger.info(f'Number of Tail Labels: {len(tail_labels):,}')
    logger.info(f'Size of Head Training Set: {len(train_h_x):,}')
    logger.info(f'Size of Head Validation Set: {len(valid_h_x):,}')
    logger.info(f'Size of Tail Training Set: {len(train_t_x):,}')
    logger.info(f'Size of Tail Validation Set: {len(valid_t_x):,}')

    logger.info('Training')
    if 'cluster' not in model_cnf:
        train_h_loader = DataLoader(MultiLabelDataset(train_h_x, train_h_y),
                                    model_cnf['train']['batch_size'],
                                    shuffle=True,
                                    num_workers=4)
        valid_h_loader = DataLoader(MultiLabelDataset(valid_h_x,
                                                      valid_h_y,
                                                      training=False),
                                    model_cnf['valid']['batch_size'],
                                    num_workers=4)
        head_model = Model(network=AttentionRNN,
                           labels_num=len(head_labels),
                           model_path=f'{model_path}-head',
                           emb_init=emb_init,
                           **data_cnf['model'],
                           **model_cnf['model'])

        if not dry_run:
            logger.info('Training Head Model')
            head_model.train(train_h_loader, valid_h_loader,
                             **model_cnf['train'])
            logger.info('Finish Traning Head Model')
        else:
            head_model.save_model()

        train_t_loader = DataLoader(MultiLabelDataset(train_t_x, train_t_y),
                                    model_cnf['train']['batch_size'],
                                    shuffle=True,
                                    num_workers=4)
        valid_t_loader = DataLoader(MultiLabelDataset(valid_t_x,
                                                      valid_t_y,
                                                      training=False),
                                    model_cnf['valid']['batch_size'],
                                    num_workers=4)
        tail_model = Model(network=AttentionRNN,
                           labels_num=len(tail_labels),
                           model_path=f'{model_path}-tail',
                           emb_init=emb_init,
                           **data_cnf['model'],
                           **model_cnf['model'])

        if not dry_run:
            logger.info('Training Tail Model')
            tail_model.train(train_t_loader, valid_t_loader,
                             **model_cnf['train'])
            logger.info('Finish Traning Tail Model')
        else:
            tail_model.save_model()

    else:
        raise Exception("FastAttention is not currently supported for "
                        "splited head and tail dataset")

    log_config(data_cnf_path, model_cnf_path, dry_run)

    return head_model, tail_model, head_labels, tail_labels
Beispiel #11
0
def splitting_head_tail_eval(
    data_cnf,
    model_cnf,
    data_name,
    model_name,
    model_path,
    emb_init,
    tree_id,
    output_suffix,
    dry_run,
    split_ratio,
    head_labels,
    tail_labels,
    head_model,
    tail_model,
):
    logger.info('Loading Test Set')
    mlb = get_mlb(data_cnf['labels_binarizer'])
    labels_num = len(mlb.classes_)
    test_x, _ = get_data(data_cnf['test']['texts'], None)
    logger.info(F'Size of Test Set: {len(test_x):,}')

    labels_binarizer_path = data_cnf['labels_binarizer']
    mlb_h = get_mlb(f"{labels_binarizer_path}_h_{split_ratio}")
    mlb_t = get_mlb(f"{labels_binarizer_path}_t_{split_ratio}")

    if head_labels is None:
        train_x, train_labels = get_data(data_cnf['train']['texts'],
                                         data_cnf['train']['labels'])
        head_labels, _, tail_labels, _ = get_head_tail_labels(
            train_labels,
            split_ratio,
        )

    h_labels_i = np.nonzero(mlb.transform(head_labels[None, ...]).toarray())[0]
    t_labels_i = np.nonzero(mlb.transform(tail_labels[None, ...]).toarray())[0]

    logger.info('Predicting')
    if 'cluster' not in model_cnf:
        test_loader = DataLoader(MultiLabelDataset(test_x),
                                 model_cnf['predict']['batch_size'],
                                 num_workers=4)

        if head_model is None:
            head_model = Model(network=AttentionRNN,
                               labels_num=len(head_labels),
                               model_path=f'{model_path}-head',
                               emb_init=emb_init,
                               load_model=True,
                               **data_cnf['model'],
                               **model_cnf['model'])

        logger.info('Predicting Head Model')
        h_k = model_cnf['predict'].get('top_head_k', 30)
        scores_h, labels_h = head_model.predict(test_loader, k=h_k)
        labels_h = mlb_h.classes_[labels_h]
        logger.info('Finish Predicting Head Model')

        if tail_model is None:
            tail_model = Model(network=AttentionRNN,
                               labels_num=len(tail_labels),
                               model_path=f'{model_path}-tail',
                               emb_init=emb_init,
                               load_model=True,
                               **data_cnf['model'],
                               **model_cnf['model'])

        logger.info('Predicting Tail Model')
        t_k = model_cnf['predict'].get('top_tail_k', 70)
        scores_t, labels_t = tail_model.predict(test_loader, k=t_k)
        labels_t = mlb_t.classes_[labels_t]
        logger.info('Finish Predicting Tail Model')

        scores = np.c_[scores_h, scores_t]
        labels = np.c_[labels_h, labels_t]

        i = np.arange(len(scores))[:, None]
        j = np.argsort(scores)[:, ::-1]

        scores = scores[i, j]
        labels = labels[i, j]
    else:
        raise Exception("FastAttention is not currently supported for "
                        "splited head and tail dataset")

    logger.info('Finish Predicting')
    score_path, label_path = output_res(data_cnf['output']['res'],
                                        f'{model_name}-{data_name}{tree_id}',
                                        scores, labels, output_suffix)

    log_results(score_path, label_path, dry_run)