Beispiel #1
0
def main():
    global args

    set_random_seed(args.seed)
    if not args.use_avai_gpus:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available() and not args.use_cpu
    log_name = 'test.log' if args.evaluate else 'train.log'
    log_name += time.strftime('-%Y-%m-%d-%H-%M-%S')
    sys.stdout = Logger(osp.join(args.save_dir, log_name))
    print('** Arguments **')
    arg_keys = list(args.__dict__.keys())
    arg_keys.sort()
    for key in arg_keys:
        print('{}: {}'.format(key, args.__dict__[key]))
    print('\n')
    print('Collecting env info ...')
    print('** System info **\n{}\n'.format(collect_env_info()))
    if use_gpu:
        torch.backends.cudnn.benchmark = True
    else:
        warnings.warn(
            'Currently using CPU, however, GPU is highly recommended')

    datamanager = build_datamanager(args)

    print('Building model: {}'.format(args.arch))
    model = torchreid.models.build_model(
        name=args.arch,
        num_classes=datamanager.num_train_pids,
        loss=args.loss.lower(),
        pretrained=(not args.no_pretrained),
        use_gpu=use_gpu)
    num_params, flops = compute_model_complexity(
        model, (1, 3, args.height, args.width))
    print('Model complexity: params={:,} flops={:,}'.format(num_params, flops))

    if args.load_weights and check_isfile(args.load_weights):
        load_pretrained_weights(model, args.load_weights)

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    optimizer = torchreid.optim.build_optimizer(model,
                                                **optimizer_kwargs(args))

    scheduler = torchreid.optim.build_lr_scheduler(optimizer,
                                                   **lr_scheduler_kwargs(args))

    if args.resume and check_isfile(args.resume):
        args.start_epoch = resume_from_checkpoint(args.resume,
                                                  model,
                                                  optimizer=optimizer)

    print('Building {}-engine for {}-reid'.format(args.loss, args.app))
    engine = build_engine(args, datamanager, model, optimizer, scheduler)

    engine.run(**engine_run_kwargs(args))
Beispiel #2
0
def main():
    global args

    set_random_seed(args.seed)
    if not args.use_avai_gpus:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = (torch.cuda.is_available() and not args.use_cpu)
    log_name = 'test.log' if args.evaluate else 'train.log'
    sys.stdout = Logger(osp.join(args.save_dir, log_name))
    print('==========\nArgs:{}\n=========='.format(args))
    if use_gpu:
        print('Currently using GPU {}'.format(args.gpu_devices))
        torch.backends.cudnn.benchmark = True
    else:
        warnings.warn(
            'Currently using CPU, however, GPU is highly recommended')

    datamanager = build_datamanager(args)

    print('Building model: {}'.format(args.arch))
    model = torchreid.models.build_model(
        name=args.arch,
        num_classes=datamanager.num_train_pids,
        loss=args.loss.lower(),
        pretrained=(not args.no_pretrained),
        use_gpu=use_gpu)
    num_params, flops = compute_model_complexity(
        model, (1, 3, args.height, args.width))
    print('Model complexity: params={:,} flops={:,}'.format(num_params, flops))

    if args.load_weights and check_isfile(args.load_weights):
        load_pretrained_weights(model, args.load_weights)

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    optimizer = torchreid.optim.build_optimizer(model,
                                                **optimizer_kwargs(args))

    scheduler = torchreid.optim.build_lr_scheduler(optimizer,
                                                   **lr_scheduler_kwargs(args))

    if args.resume and check_isfile(args.resume):
        args.start_epoch = resume_from_checkpoint(args.resume,
                                                  model,
                                                  optimizer=optimizer)

    print('Building {}-engine for {}-reid'.format(args.loss, args.app))
    engine = build_engine(args, datamanager, model, optimizer, scheduler)

    engine.run(**engine_run_kwargs(args))