Beispiel #1
0
def main(argv):
    if len(argv) > 1:
        raise RuntimeError('Too many command-line arguments.')

    # Read list of index images from dataset file.
    print('Reading list of index images from dataset file...')
    _, index_list, _ = dataset.ReadDatasetFile(cmd_args.dataset_file_path)
    num_images = len(index_list)
    print('done! Found %d images' % num_images)

    # Compose list of image paths.
    image_paths = [
        os.path.join(cmd_args.images_dir, index_image_name + _IMAGE_EXTENSION)
        for index_image_name in index_list
    ]

    # Extract boxes/features and save them to files.
    boxes_and_features_extraction.ExtractBoxesAndFeaturesToFiles(
        image_names=index_list,
        image_paths=image_paths,
        delf_config_path=cmd_args.delf_config_path,
        detector_model_dir=cmd_args.detector_model_dir,
        detector_thresh=cmd_args.detector_thresh,
        output_features_dir=cmd_args.output_features_dir,
        output_boxes_dir=cmd_args.output_boxes_dir,
        output_mapping=cmd_args.output_index_mapping)
def main(argv):
  if len(argv) > 1:
    raise RuntimeError('Too many command-line arguments.')

  # Read list of query images from dataset file.
  print('Reading list of query images and boxes from dataset file...')
  query_list, _, ground_truth = dataset.ReadDatasetFile(
      cmd_args.dataset_file_path)
  num_images = len(query_list)
  print(f'done! Found {num_images} images')

  # Parse DelfConfig proto.
  config = delf_config_pb2.DelfConfig()
  with tf.io.gfile.GFile(cmd_args.delf_config_path, 'r') as f:
    text_format.Merge(f.read(), config)

  # Create output directory if necessary.
  if not tf.io.gfile.exists(cmd_args.output_features_dir):
    tf.io.gfile.makedirs(cmd_args.output_features_dir)

  extractor_fn = extractor.MakeExtractor(config)

  start = time.time()
  for i in range(num_images):
    query_image_name = query_list[i]
    input_image_filename = os.path.join(cmd_args.images_dir,
                                        query_image_name + _IMAGE_EXTENSION)
    output_feature_filename = os.path.join(cmd_args.output_features_dir,
                                           query_image_name + _DELF_EXTENSION)
    if tf.io.gfile.exists(output_feature_filename):
      print(f'Skipping {query_image_name}')
      continue

    # Crop query image according to bounding box.
    bbox = [int(round(b)) for b in ground_truth[i]['bbx']]
    im = np.array(utils.RgbLoader(input_image_filename).crop(bbox))

    # Extract and save features.
    extracted_features = extractor_fn(im)
    locations_out = extracted_features['local_features']['locations']
    descriptors_out = extracted_features['local_features']['descriptors']
    feature_scales_out = extracted_features['local_features']['scales']
    attention_out = extracted_features['local_features']['attention']

    feature_io.WriteToFile(output_feature_filename, locations_out,
                           feature_scales_out, descriptors_out, attention_out)

  elapsed = (time.time() - start)
  print('Processed %d query images in %f seconds' % (num_images, elapsed))
def main(argv):
    if len(argv) > 1:
        raise RuntimeError('Too many command-line arguments.')

    # Read list of images from dataset file.
    print('Reading list of images from dataset file...')
    query_list, index_list, _ = dataset.ReadDatasetFile(
        cmd_args.dataset_file_path)
    if cmd_args.use_query_images:
        image_list = query_list
    else:
        image_list = index_list
    num_images = len(image_list)
    print('done! Found %d images' % num_images)

    aggregation_extraction.ExtractAggregatedRepresentationsToFiles(
        image_names=image_list,
        features_dir=cmd_args.features_dir,
        aggregation_config_path=cmd_args.aggregation_config_path,
        mapping_path=cmd_args.index_mapping_path,
        output_aggregation_dir=cmd_args.output_aggregation_dir)
Beispiel #4
0
def main(argv):
    if len(argv) > 1:
        raise RuntimeError('Too many command-line arguments.')

    # Parse dataset to obtain query/index images, and ground-truth.
    print('Parsing dataset...')
    query_list, index_list, ground_truth = dataset.ReadDatasetFile(
        cmd_args.dataset_file_path)
    num_query_images = len(query_list)
    num_index_images = len(index_list)
    (_, medium_ground_truth,
     hard_ground_truth) = dataset.ParseEasyMediumHardGroundTruth(ground_truth)
    print('done! Found %d queries and %d index images' %
          (num_query_images, num_index_images))

    # Parse AggregationConfig protos.
    query_config = aggregation_config_pb2.AggregationConfig()
    with tf.io.gfile.GFile(cmd_args.query_aggregation_config_path, 'r') as f:
        text_format.Merge(f.read(), query_config)
    index_config = aggregation_config_pb2.AggregationConfig()
    with tf.io.gfile.GFile(cmd_args.index_aggregation_config_path, 'r') as f:
        text_format.Merge(f.read(), index_config)

    # Read aggregated descriptors.
    query_aggregated_descriptors, query_visual_words = _ReadAggregatedDescriptors(
        cmd_args.query_aggregation_dir, query_list, query_config)
    index_aggregated_descriptors, index_visual_words = _ReadAggregatedDescriptors(
        cmd_args.index_aggregation_dir, index_list, index_config)

    # Create similarity computer.
    similarity_computer = (feature_aggregation_similarity.
                           SimilarityAggregatedRepresentation(index_config))

    # Compute similarity between query and index images, potentially re-ranking
    # with geometric verification.
    ranks_before_gv = np.zeros([num_query_images, num_index_images],
                               dtype='int32')
    if cmd_args.use_geometric_verification:
        medium_ranks_after_gv = np.zeros([num_query_images, num_index_images],
                                         dtype='int32')
        hard_ranks_after_gv = np.zeros([num_query_images, num_index_images],
                                       dtype='int32')
    for i in range(num_query_images):
        print('Performing retrieval with query %d (%s)...' %
              (i, query_list[i]))
        start = time.clock()

        # Compute similarity between aggregated descriptors.
        similarities = np.zeros([num_index_images])
        for j in range(num_index_images):
            similarities[j] = similarity_computer.ComputeSimilarity(
                query_aggregated_descriptors[i],
                index_aggregated_descriptors[j], query_visual_words[i],
                index_visual_words[j])

        ranks_before_gv[i] = np.argsort(-similarities)

        # Re-rank using geometric verification.
        if cmd_args.use_geometric_verification:
            medium_ranks_after_gv[
                i] = image_reranking.RerankByGeometricVerification(
                    ranks_before_gv[i], similarities, query_list[i],
                    index_list, cmd_args.query_features_dir,
                    cmd_args.index_features_dir,
                    set(medium_ground_truth[i]['junk']))
            hard_ranks_after_gv[
                i] = image_reranking.RerankByGeometricVerification(
                    ranks_before_gv[i], similarities, query_list[i],
                    index_list, cmd_args.query_features_dir,
                    cmd_args.index_features_dir,
                    set(hard_ground_truth[i]['junk']))

        elapsed = (time.clock() - start)
        print('done! Retrieval for query %d took %f seconds' % (i, elapsed))

    # Create output directory if necessary.
    if not tf.io.gfile.exists(cmd_args.output_dir):
        tf.io.gfile.makedirs(cmd_args.output_dir)

    # Compute metrics.
    medium_metrics = dataset.ComputeMetrics(ranks_before_gv,
                                            medium_ground_truth, _PR_RANKS)
    hard_metrics = dataset.ComputeMetrics(ranks_before_gv, hard_ground_truth,
                                          _PR_RANKS)
    if cmd_args.use_geometric_verification:
        medium_metrics_after_gv = dataset.ComputeMetrics(
            medium_ranks_after_gv, medium_ground_truth, _PR_RANKS)
        hard_metrics_after_gv = dataset.ComputeMetrics(hard_ranks_after_gv,
                                                       hard_ground_truth,
                                                       _PR_RANKS)

    # Write metrics to file.
    mean_average_precision_dict = {
        'medium': medium_metrics[0],
        'hard': hard_metrics[0]
    }
    mean_precisions_dict = {
        'medium': medium_metrics[1],
        'hard': hard_metrics[1]
    }
    mean_recalls_dict = {'medium': medium_metrics[2], 'hard': hard_metrics[2]}
    if cmd_args.use_geometric_verification:
        mean_average_precision_dict.update({
            'medium_after_gv':
            medium_metrics_after_gv[0],
            'hard_after_gv':
            hard_metrics_after_gv[0]
        })
        mean_precisions_dict.update({
            'medium_after_gv':
            medium_metrics_after_gv[1],
            'hard_after_gv':
            hard_metrics_after_gv[1]
        })
        mean_recalls_dict.update({
            'medium_after_gv': medium_metrics_after_gv[2],
            'hard_after_gv': hard_metrics_after_gv[2]
        })
    dataset.SaveMetricsFile(
        mean_average_precision_dict, mean_precisions_dict, mean_recalls_dict,
        _PR_RANKS, os.path.join(cmd_args.output_dir, _METRICS_FILENAME))
def main(argv):
    if len(argv) > 1:
        raise RuntimeError('Too many command-line arguments.')

    # Process output directory.
    if tf.io.gfile.exists(cmd_args.output_cluster_dir):
        raise RuntimeError(
            'output_cluster_dir = %s already exists. This may indicate that a '
            'previous run already wrote checkpoints in this directory, which would '
            'lead to incorrect training. Please re-run this script by specifying an'
            ' inexisting directory.' % cmd_args.output_cluster_dir)
    else:
        tf.io.gfile.makedirs(cmd_args.output_cluster_dir)

    # Read list of index images from dataset file.
    print('Reading list of index images from dataset file...')
    _, index_list, _ = dataset.ReadDatasetFile(cmd_args.dataset_file_path)
    num_images = len(index_list)
    print('done! Found %d images' % num_images)

    # Loop over list of index images and collect DELF features.
    features_for_clustering = []
    start = time.clock()
    print('Starting to collect features from index images...')
    for i in range(num_images):
        if i > 0 and i % _STATUS_CHECK_ITERATIONS == 0:
            elapsed = (time.clock() - start)
            print('Processing index image %d out of %d, last %d '
                  'images took %f seconds' %
                  (i, num_images, _STATUS_CHECK_ITERATIONS, elapsed))
            start = time.clock()

        features_filename = index_list[i] + _DELF_EXTENSION
        features_fullpath = os.path.join(cmd_args.features_dir,
                                         features_filename)
        _, _, features, _, _ = feature_io.ReadFromFile(features_fullpath)
        if features.size != 0:
            assert features.shape[1] == _DELF_DIM
        for feature in features:
            features_for_clustering.append(feature)

    features_for_clustering = np.array(features_for_clustering,
                                       dtype=np.float32)
    print('All features were loaded! There are %d features, each with %d '
          'dimensions' %
          (features_for_clustering.shape[0], features_for_clustering.shape[1]))

    # Run K-means clustering.
    def _get_input_fn():
        """Helper function to create input function and hook for training.

    Returns:
      input_fn: Input function for k-means Estimator training.
      init_hook: Hook used to load data during training.
    """
        init_hook = _IteratorInitHook()

        def _input_fn():
            """Produces tf.data.Dataset object for k-means training.

      Returns:
        Tensor with the data for training.
      """
            features_placeholder = tf.compat.v1.placeholder(
                tf.float32, features_for_clustering.shape)
            delf_dataset = tf.data.Dataset.from_tensor_slices(
                (features_placeholder))
            delf_dataset = delf_dataset.shuffle(1000).batch(
                features_for_clustering.shape[0])
            iterator = tf.compat.v1.data.make_initializable_iterator(
                delf_dataset)

            def _initializer_fn(sess):
                """Initialize dataset iterator, feed in the data."""
                sess.run(
                    iterator.initializer,
                    feed_dict={features_placeholder: features_for_clustering})

            init_hook.iterator_initializer_fn = _initializer_fn
            return iterator.get_next()

        return _input_fn, init_hook

    input_fn, init_hook = _get_input_fn()

    kmeans = tf.compat.v1.estimator.experimental.KMeans(
        num_clusters=cmd_args.num_clusters,
        model_dir=cmd_args.output_cluster_dir,
        use_mini_batch=False,
    )

    print('Starting K-means clustering...')
    start = time.clock()
    for i in range(cmd_args.num_iterations):
        kmeans.train(input_fn, hooks=[init_hook])
        average_sum_squared_error = kmeans.evaluate(
            input_fn, hooks=[init_hook
                             ])['score'] / features_for_clustering.shape[0]
        elapsed = (time.clock() - start)
        print('K-means iteration %d (out of %d) took %f seconds, '
              'average-sum-of-squares: %f' %
              (i, cmd_args.num_iterations, elapsed, average_sum_squared_error))
        start = time.clock()

    print('K-means clustering finished!')
Beispiel #6
0
def main(argv):
  if len(argv) > 1:
    raise RuntimeError('Too many command-line arguments.')

  # Read list of images from dataset file.
  print('Reading list of images from dataset file...')
  query_list, index_list, ground_truth = dataset.ReadDatasetFile(
      FLAGS.dataset_file_path)
  if FLAGS.image_set == 'query':
    image_list = query_list
  else:
    image_list = index_list
  num_images = len(image_list)
  print('done! Found %d images' % num_images)

  # Parse DelfConfig proto.
  config = delf_config_pb2.DelfConfig()
  with tf.io.gfile.GFile(FLAGS.delf_config_path, 'r') as f:
    text_format.Parse(f.read(), config)

  # Create output directory if necessary.
  if not tf.io.gfile.exists(FLAGS.output_features_dir):
    tf.io.gfile.makedirs(FLAGS.output_features_dir)

  extractor_fn = extractor.MakeExtractor(config)

  start = time.time()
  for i in range(num_images):
    if i == 0:
      print('Starting to extract features...')
    elif i % _STATUS_CHECK_ITERATIONS == 0:
      elapsed = (time.time() - start)
      print('Processing image %d out of %d, last %d '
            'images took %f seconds' %
            (i, num_images, _STATUS_CHECK_ITERATIONS, elapsed))
      start = time.time()

    image_name = image_list[i]
    input_image_filename = os.path.join(FLAGS.images_dir,
                                        image_name + _IMAGE_EXTENSION)

    # Compose output file name and decide if image should be skipped.
    should_skip_global = True
    should_skip_local = True
    if config.use_global_features:
      output_global_feature_filename = os.path.join(
          FLAGS.output_features_dir, image_name + _DELG_GLOBAL_EXTENSION)
      if not tf.io.gfile.exists(output_global_feature_filename):
        should_skip_global = False
    if config.use_local_features:
      output_local_feature_filename = os.path.join(
          FLAGS.output_features_dir, image_name + _DELG_LOCAL_EXTENSION)
      if not tf.io.gfile.exists(output_local_feature_filename):
        should_skip_local = False
    if should_skip_global and should_skip_local:
      print('Skipping %s' % image_name)
      continue

    pil_im = utils.RgbLoader(input_image_filename)
    resize_factor = 1.0
    if FLAGS.image_set == 'query':
      # Crop query image according to bounding box.
      original_image_size = max(pil_im.size)
      bbox = [int(round(b)) for b in ground_truth[i]['bbx']]
      pil_im = pil_im.crop(bbox)
      cropped_image_size = max(pil_im.size)
      resize_factor = cropped_image_size / original_image_size

    im = np.array(pil_im)

    # Extract and save features.
    extracted_features = extractor_fn(im, resize_factor)
    if config.use_global_features:
      global_descriptor = extracted_features['global_descriptor']
      datum_io.WriteToFile(global_descriptor, output_global_feature_filename)
    if config.use_local_features:
      locations = extracted_features['local_features']['locations']
      descriptors = extracted_features['local_features']['descriptors']
      feature_scales = extracted_features['local_features']['scales']
      attention = extracted_features['local_features']['attention']
      feature_io.WriteToFile(output_local_feature_filename, locations,
                             feature_scales, descriptors, attention)
Beispiel #7
0
def main(argv):
  if len(argv) > 1:
    raise RuntimeError('Too many command-line arguments.')

  # Parse dataset to obtain query/index images, and ground-truth.
  print('Parsing dataset...')
  query_list, index_list, ground_truth = dataset.ReadDatasetFile(
      FLAGS.dataset_file_path)
  num_query_images = len(query_list)
  num_index_images = len(index_list)
  (_, medium_ground_truth,
   hard_ground_truth) = dataset.ParseEasyMediumHardGroundTruth(ground_truth)
  print('done! Found %d queries and %d index images' %
        (num_query_images, num_index_images))

  # Read global features.
  query_global_features = _ReadDelgGlobalDescriptors(FLAGS.query_features_dir,
                                                     query_list)
  index_global_features = _ReadDelgGlobalDescriptors(FLAGS.index_features_dir,
                                                     index_list)

  # Compute similarity between query and index images, potentially re-ranking
  # with geometric verification.
  ranks_before_gv = np.zeros([num_query_images, num_index_images],
                             dtype='int32')
  if FLAGS.use_geometric_verification:
    medium_ranks_after_gv = np.zeros([num_query_images, num_index_images],
                                     dtype='int32')
    hard_ranks_after_gv = np.zeros([num_query_images, num_index_images],
                                   dtype='int32')
  for i in range(num_query_images):
    print('Performing retrieval with query %d (%s)...' % (i, query_list[i]))
    start = time.time()

    # Compute similarity between global descriptors.
    similarities = np.dot(index_global_features, query_global_features[i])
    ranks_before_gv[i] = np.argsort(-similarities)

    # Re-rank using geometric verification.
    if FLAGS.use_geometric_verification:
      medium_ranks_after_gv[i] = image_reranking.RerankByGeometricVerification(
          input_ranks=ranks_before_gv[i],
          initial_scores=similarities,
          query_name=query_list[i],
          index_names=index_list,
          query_features_dir=FLAGS.query_features_dir,
          index_features_dir=FLAGS.index_features_dir,
          junk_ids=set(medium_ground_truth[i]['junk']),
          local_feature_extension=_DELG_LOCAL_EXTENSION,
          ransac_seed=0,
          descriptor_matching_threshold=FLAGS
          .local_descriptor_matching_threshold,
          ransac_residual_threshold=FLAGS.ransac_residual_threshold,
          use_ratio_test=FLAGS.use_ratio_test)
      hard_ranks_after_gv[i] = image_reranking.RerankByGeometricVerification(
          input_ranks=ranks_before_gv[i],
          initial_scores=similarities,
          query_name=query_list[i],
          index_names=index_list,
          query_features_dir=FLAGS.query_features_dir,
          index_features_dir=FLAGS.index_features_dir,
          junk_ids=set(hard_ground_truth[i]['junk']),
          local_feature_extension=_DELG_LOCAL_EXTENSION,
          ransac_seed=0,
          descriptor_matching_threshold=FLAGS
          .local_descriptor_matching_threshold,
          ransac_residual_threshold=FLAGS.ransac_residual_threshold,
          use_ratio_test=FLAGS.use_ratio_test)

    elapsed = (time.time() - start)
    print('done! Retrieval for query %d took %f seconds' % (i, elapsed))

  # Create output directory if necessary.
  if not tf.io.gfile.exists(FLAGS.output_dir):
    tf.io.gfile.makedirs(FLAGS.output_dir)

  # Compute metrics.
  medium_metrics = dataset.ComputeMetrics(ranks_before_gv, medium_ground_truth,
                                          _PR_RANKS)
  hard_metrics = dataset.ComputeMetrics(ranks_before_gv, hard_ground_truth,
                                        _PR_RANKS)
  if FLAGS.use_geometric_verification:
    medium_metrics_after_gv = dataset.ComputeMetrics(medium_ranks_after_gv,
                                                     medium_ground_truth,
                                                     _PR_RANKS)
    hard_metrics_after_gv = dataset.ComputeMetrics(hard_ranks_after_gv,
                                                   hard_ground_truth, _PR_RANKS)

  # Write metrics to file.
  mean_average_precision_dict = {
      'medium': medium_metrics[0],
      'hard': hard_metrics[0]
  }
  mean_precisions_dict = {'medium': medium_metrics[1], 'hard': hard_metrics[1]}
  mean_recalls_dict = {'medium': medium_metrics[2], 'hard': hard_metrics[2]}
  if FLAGS.use_geometric_verification:
    mean_average_precision_dict.update({
        'medium_after_gv': medium_metrics_after_gv[0],
        'hard_after_gv': hard_metrics_after_gv[0]
    })
    mean_precisions_dict.update({
        'medium_after_gv': medium_metrics_after_gv[1],
        'hard_after_gv': hard_metrics_after_gv[1]
    })
    mean_recalls_dict.update({
        'medium_after_gv': medium_metrics_after_gv[2],
        'hard_after_gv': hard_metrics_after_gv[2]
    })
  dataset.SaveMetricsFile(mean_average_precision_dict, mean_precisions_dict,
                          mean_recalls_dict, _PR_RANKS,
                          os.path.join(FLAGS.output_dir, _METRICS_FILENAME))