Beispiel #1
0
    def test_str(self):
        """Test that the string representation contains all information."""
        report = ValidationReport([("good", "2020-10-05")])
        report.increment_total_checks()
        report.increment_total_checks()
        report.increment_total_checks()
        report.add_raised_warning(ImportWarning("wrong import"))
        report.add_raised_warning(ImportWarning("right import"))
        report.add_raised_error(self.ERROR_1)
        report.add_raised_error(self.ERROR_2)

        assert str(report) == "3 checks run\n1 checks failed\n1 checks suppressed\n2 warnings\n"\
            "(('bad', datetime.date(2020, 11, 18)), 'exp 2', 'msg 2')\nwrong import\nright import\n"
 def test_more_than_two_copies(self):
     validator = StaticValidator(self.params)
     report = ValidationReport([])
     df = pd.DataFrame([["a", "1"], ["b", "2"], ["b", "2"], ["b", "2"]])
     validator.check_duplicate_rows(df, "file", report)
     assert len(report.raised_warnings) == 1
     assert report.raised_warnings[0].expression == [2, 3]
    def test_duplicate_dates(self):
        params = {
            "data_source": "",
            "span_length": 1,
            "end_date": "2020-09-02",
            "expected_lag": {}
        }
        validator = StaticValidator(params)
        report = ValidationReport([])

        filenames = [("20200901_county_signal_signal.csv", "match_obj"),
                     ("20200903_county_signal_signal.csv", "match_obj"),
                     ("20200903_usa_signal_signal.csv", "match_obj"),
                     ("20200903_usa_signal_signal.csv", "match_obj")]
        validator.check_missing_date_files(filenames, report)

        assert len(report.raised_errors) == 1
        assert "check_missing_date_files" in [
            err.check_data_id[0] for err in report.raised_errors
        ]
        assert len([
            err.expression[0] for err in report.raised_errors
            if err.check_data_id[0] == "check_missing_date_files"
        ]) == 1
        assert [
            err.expression[0] for err in report.raised_errors
            if err.check_data_id[0] == "check_missing_date_files"
        ][0] == datetime.strptime("20200902", "%Y%m%d").date()
Beispiel #4
0
    def test_1000x_val(self):
        validator = DynamicValidator(self.params)
        report = ValidationReport([])
        test_data = {
            "val": [1, 1, 1, 2000, 0, 1],
            "se": [np.nan] * 6,
            "sample_size": [np.nan] * 6,
            "geo_id": ["1"] * 6
        }
        ref_data = {
            "val": [1, 1, 1, 2, 0, 1],
            "se": [np.nan] * 6,
            "sample_size": [np.nan] * 6,
            "geo_id": ["1"] * 6
        }

        test_df = pd.DataFrame(test_data)
        ref_df = pd.DataFrame(ref_data)
        validator.check_avg_val_vs_reference(
            test_df, ref_df, datetime.combine(date.today(),
                                              datetime.min.time()), "geo",
            "signal", report)

        assert len(report.raised_errors) == 1
        assert "check_test_vs_reference_avg_changed" in [
            err.check_data_id[0] for err in report.raised_errors
        ]
    def test_empty_df(self):
        validator = StaticValidator(self.params)
        report = ValidationReport([])
        empty_df = pd.DataFrame(columns=["geo_id"], dtype=str)
        validator.check_bad_geo_id_format(empty_df, "name", "county", report)

        assert len(report.raised_errors) == 0
    def test_gt_max_pct(self):
        validator = StaticValidator(self.params)
        report = ValidationReport([])
        df = pd.DataFrame([1e7], columns=["val"])
        validator.check_bad_val(df, "name", "pct", report)

        assert len(report.raised_errors) == 1
        assert "check_val_pct_gt_100" in report.raised_errors[0].check_data_id
 def test_non_consecutive_duplicates(self):
     validator = StaticValidator(self.params)
     report = ValidationReport([])
     df = pd.DataFrame([["a", "1"], ["b", "2"], ["a", "1"]])
     validator.check_duplicate_rows(df, "file", report)
     assert len(report.raised_warnings) == 1
     assert report.raised_warnings[0].expression == [2]
     assert report.raised_warnings[0].check_data_id[1] == "file"
    def test_lt_0(self):
        validator = StaticValidator(self.params)
        report = ValidationReport([])
        df = pd.DataFrame([-5], columns=["val"])
        validator.check_bad_val(df, "name", "signal", report)

        assert len(report.raised_errors) == 1
        assert "check_val_lt_0" in report.raised_errors[0].check_data_id
    def test_empty_df(self):
        validator = StaticValidator(self.params)
        report = ValidationReport([])
        empty_df = pd.DataFrame(columns=["val"])
        validator.check_bad_val(empty_df, "", "", report)
        validator.check_bad_val(empty_df, "", "prop", report)
        validator.check_bad_val(empty_df, "", "pct", report)

        assert len(report.raised_errors) == 0
Beispiel #10
0
    def test_same_df(self):
        validator = DynamicValidator(self.params)
        report = ValidationReport([])
        test_df = pd.DataFrame([date.today()] * 5, columns=["time_value"])
        ref_df = pd.DataFrame([date.today()] * 5, columns=["time_value"])
        validator.check_rapid_change_num_rows(test_df, ref_df, date.today(),
                                              "geo", "signal", report)

        assert len(report.raised_errors) == 0
    def test_empty_filelist(self):
        params = {
            "data_source": "",
            "span_length": 8,
            "end_date": "2020-09-09",
            "expected_lag": {}
        }
        validator = StaticValidator(params)
        report = ValidationReport([])
        report = ValidationReport([])

        filenames = list()
        validator.check_missing_date_files(filenames, report)

        assert len(report.raised_errors) == 1
        assert "check_missing_date_files" in [
            err.check_data_id[0] for err in report.raised_errors
        ]
        assert len(report.raised_errors[0].expression) == 9
Beispiel #12
0
    def test_zero_outlier(self):
        validator = DynamicValidator(self.params)
        report = ValidationReport([])

        ref_val = [
            30, 30.28571429, 30.57142857, 30.85714286, 31.14285714,
            31.42857143, 31.71428571, 32, 32, 32.14285714, 32.28571429,
            32.42857143, 32.57142857, 32.71428571, 32.85714286, 33, 33, 33, 33,
            33, 33, 33, 33, 33, 33, 33, 33.28571429, 33.57142857, 33.85714286,
            34.14285714
        ]
        test_val = [0, 0, 0]

        ref_data = {
            "val": ref_val,
            "se": [np.nan] * len(ref_val),
            "sample_size": [np.nan] * len(ref_val),
            "geo_id": ["1"] * len(ref_val),
            "time_value": pd.date_range(start="2020-09-24", end="2020-10-23")
        }
        test_data = {
            "val": test_val,
            "se": [np.nan] * len(test_val),
            "sample_size": [np.nan] * len(test_val),
            "geo_id": ["1"] * len(test_val),
            "time_value": pd.date_range(start="2020-10-24", end="2020-10-26")
        }

        ref_data2 = {
            "val": ref_val,
            "se": [np.nan] * len(ref_val),
            "sample_size": [np.nan] * len(ref_val),
            "geo_id": ["2"] * len(ref_val),
            "time_value": pd.date_range(start="2020-09-24", end="2020-10-23")
        }
        test_data2 = {
            "val": test_val,
            "se": [np.nan] * len(test_val),
            "sample_size": [np.nan] * len(test_val),
            "geo_id": ["2"] * len(test_val),
            "time_value": pd.date_range(start="2020-10-24", end="2020-10-26")
        }

        ref_df = pd.concat([pd.DataFrame(ref_data), pd.DataFrame(ref_data2)]). \
                    reset_index(drop=True)
        test_df = pd.concat([pd.DataFrame(test_data), pd.DataFrame(test_data2)]). \
                    reset_index(drop=True)

        validator.check_positive_negative_spikes(test_df, ref_df, "state",
                                                 "signal", report)

        assert len(report.raised_errors) == 1
        assert "check_positive_negative_spikes" in [
            err.check_data_id[0] for err in report.raised_errors
        ]
Beispiel #13
0
    def test_source_api_overlap(self):
        validator = DynamicValidator(self.params)
        report = ValidationReport([])

        #Data from 51580 between 9/24 and 10/26 (10/25 query date)
        ref_val = [
            30, 30.28571429, 30.57142857, 30.85714286, 31.14285714,
            31.42857143, 31.71428571, 32, 32, 32.14285714, 32.28571429,
            32.42857143, 32.57142857, 32.71428571, 32.85714286, 33, 33, 33, 33,
            33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33
        ]
        test_val = [100, 100, 100]

        ref_data = {
            "val": ref_val,
            "se": [np.nan] * len(ref_val),
            "sample_size": [np.nan] * len(ref_val),
            "geo_id": ["1"] * len(ref_val),
            "time_value": pd.date_range(start="2020-09-24", end="2020-10-26")
        }
        test_data = {
            "val": test_val,
            "se": [np.nan] * len(test_val),
            "sample_size": [np.nan] * len(test_val),
            "geo_id": ["1"] * len(test_val),
            "time_value": pd.date_range(start="2020-10-24", end="2020-10-26")
        }

        ref_data2 = {
            "val": ref_val,
            "se": [np.nan] * len(ref_val),
            "sample_size": [np.nan] * len(ref_val),
            "geo_id": ["2"] * len(ref_val),
            "time_value": pd.date_range(start="2020-09-24", end="2020-10-26")
        }
        test_data2 = {
            "val": test_val,
            "se": [np.nan] * len(test_val),
            "sample_size": [np.nan] * len(test_val),
            "geo_id": ["2"] * len(test_val),
            "time_value": pd.date_range(start="2020-10-24", end="2020-10-26")
        }

        ref_df = pd.concat([pd.DataFrame(ref_data), pd.DataFrame(ref_data2)]). \
                    reset_index(drop=True)
        test_df = pd.concat([pd.DataFrame(test_data), pd.DataFrame(test_data2)]). \
                    reset_index(drop=True)

        validator.check_positive_negative_spikes(test_df, ref_df, "state",
                                                 "signal", report)

        assert len(report.raised_errors) == 1
        assert "check_positive_negative_spikes" in [
            err.check_data_id[0] for err in report.raised_errors
        ]
    def test_uppercase_geo_id(self):
        validator = StaticValidator(self.params)
        report = ValidationReport([])
        df = pd.DataFrame(["ak", "AK"], columns=["geo_id"])
        validator.check_bad_geo_id_value(df, "name", "state", report)

        assert len(report.raised_errors) == 0
        assert len(report.raised_warnings) == 1
        assert "check_geo_id_lowercase" in report.raised_warnings[
            0].check_data_id
        assert "AK" in report.raised_warnings[0].expression
    def test_invalid_geo_id_msa(self):
        validator = StaticValidator(self.params)
        report = ValidationReport([])
        df = pd.DataFrame(["0", "54321", "123", ".0000", "abc12"],
                          columns=["geo_id"])
        validator.check_bad_geo_id_format(df, "name", "msa", report)

        assert len(report.raised_errors) == 1
        assert "check_geo_id_format" in report.raised_errors[0].check_data_id
        assert len(report.raised_errors[0].expression) == 2
        assert "54321" not in report.raised_errors[0].expression
    def test_invalid_geo_id_national(self):
        validator = StaticValidator(self.params)
        report = ValidationReport([])
        df = pd.DataFrame(["us", "zz"], columns=["geo_id"])
        validator.check_bad_geo_id_value(df, "name", "national", report)

        assert len(report.raised_errors) == 1
        assert "check_bad_geo_id_value" in report.raised_errors[
            0].check_data_id
        assert len(report.raised_errors[0].expression) == 1
        assert "us" not in report.raised_errors[0].expression
        assert "zz" in report.raised_errors[0].expression
Beispiel #17
0
    def test_neg_outlier(self):
        validator = DynamicValidator(self.params)
        report = ValidationReport([])

        ref_val = [
            100, 101, 100, 101, 100, 100, 100, 100, 100, 100, 100, 102, 100,
            100, 100, 100, 100, 101, 100, 100, 100, 100, 100, 99, 100, 100, 98,
            100, 100, 100
        ]
        test_val = [10, 10, 10]

        ref_data = {
            "val": ref_val,
            "se": [np.nan] * len(ref_val),
            "sample_size": [np.nan] * len(ref_val),
            "geo_id": ["1"] * len(ref_val),
            "time_value": pd.date_range(start="2020-09-24", end="2020-10-23")
        }
        test_data = {
            "val": test_val,
            "se": [np.nan] * len(test_val),
            "sample_size": [np.nan] * len(test_val),
            "geo_id": ["1"] * len(test_val),
            "time_value": pd.date_range(start="2020-10-24", end="2020-10-26")
        }

        ref_data2 = {
            "val": ref_val,
            "se": [np.nan] * len(ref_val),
            "sample_size": [np.nan] * len(ref_val),
            "geo_id": ["2"] * len(ref_val),
            "time_value": pd.date_range(start="2020-09-24", end="2020-10-23")
        }
        test_data2 = {
            "val": test_val,
            "se": [np.nan] * len(test_val),
            "sample_size": [np.nan] * len(test_val),
            "geo_id": ["2"] * len(test_val),
            "time_value": pd.date_range(start="2020-10-24", end="2020-10-26")
        }

        ref_df = pd.concat([pd.DataFrame(ref_data), pd.DataFrame(ref_data2)]). \
                    reset_index(drop=True)
        test_df = pd.concat([pd.DataFrame(test_data), pd.DataFrame(test_data2)]). \
                    reset_index(drop=True)

        validator.check_positive_negative_spikes(test_df, ref_df, "state",
                                                 "signal", report)

        assert len(report.raised_errors) == 1
        assert "check_positive_negative_spikes" in [
            err.check_data_id[0] for err in report.raised_errors
        ]
    def test_lt_min_missing_not_allowed(self):
        validator = StaticValidator(self.params)
        report = ValidationReport([])
        validator.params.missing_sample_size_allowed = False
        df = pd.DataFrame([[1, 0, 10], [1, np.nan, 240], [1, np.nan, 245]],
                          columns=["val", "se", "sample_size"])
        validator.check_bad_sample_size(df, "name", report)

        assert len(report.raised_errors) == 1
        assert "check_n_gt_min" in [
            err.check_data_id[0] for err in report.raised_errors
        ]
    def test_invalid_geo_id_msa(self):
        validator = StaticValidator(self.params)
        report = ValidationReport([])
        df = pd.DataFrame(["10180", "88888", "99999"], columns=["geo_id"])
        validator.check_bad_geo_id_value(df, "name", "msa", report)

        assert len(report.raised_errors) == 1
        assert "check_bad_geo_id_value" in report.raised_errors[
            0].check_data_id
        assert len(report.raised_errors[0].expression) == 2
        assert "10180" not in report.raised_errors[0].expression
        assert "88888" in report.raised_errors[0].expression
        assert "99999" in report.raised_errors[0].expression
    def test_invalid_geo_id_hrr(self):
        validator = StaticValidator(self.params)
        report = ValidationReport([])
        df = pd.DataFrame(["1", "12", "123", "1234", "12345", "a", ".", "ab1"],
                          columns=["geo_id"])
        validator.check_bad_geo_id_format(df, "name", "hrr", report)

        assert len(report.raised_errors) == 1
        assert "check_geo_id_format" in report.raised_errors[0].check_data_id
        assert len(report.raised_errors[0].expression) == 5
        assert "1" not in report.raised_errors[0].expression
        assert "12" not in report.raised_errors[0].expression
        assert "123" not in report.raised_errors[0].expression
    def test_invalid_geo_id_state(self):
        validator = StaticValidator(self.params)
        report = ValidationReport([])
        df = pd.DataFrame(["aa", "hi", "HI", "hawaii", "Hawaii", "a", "H.I."],
                          columns=["geo_id"])
        validator.check_bad_geo_id_format(df, "name", "state", report)

        assert len(report.raised_errors) == 1
        assert "check_geo_id_format" in report.raised_errors[0].check_data_id
        assert len(report.raised_errors[0].expression) == 4
        assert "aa" not in report.raised_errors[0].expression
        assert "hi" not in report.raised_errors[0].expression
        assert "HI" not in report.raised_errors[0].expression
    def test_empty_df(self):
        validator = StaticValidator(self.params)
        report = ValidationReport([])
        empty_df = pd.DataFrame(columns=["val", "se", "sample_size"],
                                dtype=float)
        validator.check_bad_sample_size(empty_df, "", report)

        assert len(report.raised_errors) == 0

        validator.params.missing_sample_size_allowed = True
        validator.check_bad_sample_size(empty_df, "", report)

        assert len(report.raised_errors) == 0
    def test_invalid_geo_type(self):
        validator = StaticValidator(self.params)
        report = ValidationReport([])
        empty_df = pd.DataFrame(columns=["geo_id"], dtype=str)
        validator.check_bad_geo_id_format(empty_df, "name", "hello", report)

        assert len(report.raised_errors) == 1
        assert "check_geo_type" in [
            err.check_data_id[0] for err in report.raised_errors
        ]
        assert [
            err.expression for err in report.raised_errors
            if err.check_data_id[0] == "check_geo_type"
        ][0] == "hello"
Beispiel #24
0
    def test_0_vs_many(self):
        validator = DynamicValidator(self.params)
        report = ValidationReport([])

        time_value = datetime.combine(date.today(), datetime.min.time())

        test_df = pd.DataFrame([time_value] * 5, columns=["time_value"])
        ref_df = pd.DataFrame([time_value] * 1, columns=["time_value"])
        validator.check_rapid_change_num_rows(test_df, ref_df, time_value,
                                              "geo", "signal", report)

        assert len(report.raised_errors) == 1
        assert "check_rapid_change_num_rows" in [
            err.check_data_id[0] for err in report.raised_errors
        ]
    def test_jeffreys(self):
        validator = StaticValidator(self.params)
        report = ValidationReport([])
        validator.params.missing_se_allowed = False
        df = pd.DataFrame([[0, 0, 200], [1, 0, np.nan], [1, np.nan, np.nan]],
                          columns=["val", "se", "sample_size"])
        validator.check_bad_se(df, "name", report)

        assert len(report.raised_errors) == 2
        assert "check_se_not_missing_and_in_range" in [
            err.check_data_id[0] for err in report.raised_errors
        ]
        assert "check_se_0_when_val_0" in [
            err.check_data_id[0] for err in report.raised_errors
        ]
    def test_same_day(self):
        params = {
            "data_source": "",
            "span_length": 0,
            "end_date": "2020-09-01",
            "expected_lag": {}
        }
        validator = StaticValidator(params)
        report = ValidationReport([])

        filenames = [("20200901_county_signal_signal.csv", "match_obj")]
        validator.check_missing_date_files(filenames, report)

        assert len(report.raised_errors) == 0
        assert "check_missing_date_files" not in [
            err.check_data_id[0] for err in report.raised_errors
        ]
Beispiel #27
0
    def test_add_raised_suppressed_error(self):
        """Test that an supressed error does not show up in the unsuppressed error list."""
        report = ValidationReport([("good", "2020-10-05")])
        report.add_raised_error(self.ERROR_1)

        assert len(report.unsuppressed_errors) == 0
        assert report.num_suppressed == 1
        assert len(report.errors_to_suppress) == 0

        # Each error can only be surpressed once.
        report.add_raised_error(self.ERROR_1)
        assert report.unsuppressed_errors == [self.ERROR_1]
Beispiel #28
0
    def test_same_n(self):
        validator = DynamicValidator(self.params)
        report = ValidationReport([])

        data = {
            "val": [np.nan] * 6,
            "se": [np.nan] * 6,
            "sample_size": [1, 1, 1, 2, 0, 1],
            "geo_id": ["1"] * 6
        }

        test_df = pd.DataFrame(data)
        ref_df = pd.DataFrame(data)

        validator.check_avg_val_vs_reference(test_df, ref_df, date.today(),
                                             "geo", "signal", report)

        assert len(report.raised_errors) == 0
Beispiel #29
0
 def test_add_raised_unsuppressed_error(self):
     """Test that an unsupressed error shows up in the unsuppressed error list."""
     report = ValidationReport([("bad", "2020-10-05")])
     report.add_raised_error(self.ERROR_1)
     report.add_raised_error(self.ERROR_2)
     assert report.unsuppressed_errors == [self.ERROR_1, self.ERROR_2]
 def test_single_column_duplicates_but_not_row(self):
     validator = StaticValidator(self.params)
     report = ValidationReport([])
     df = pd.DataFrame([["a", "1"], ["a", "2"], ["b", "2"]])
     validator.check_duplicate_rows(df, "file", report)
     assert len(report.raised_warnings) == 0