Beispiel #1
0
def deploy_keras_model(dltile, src_product_id, dest_product_id):
    import tensorflow as tf
    import numpy as np
    catalog_client = dl.Catalog()
    raster_client = dl.Raster()
    metadata_client = dl.Metadata()
    # NOTE substitute your own trained model here.
    model = tf.keras.applications.resnet50.ResNet50()
    scene = metadata_client.search(src_product_id,
                                   geom=raster_client.dltile(dltile),
                                   limit=1)['features'][0]['id']
    tile, meta = raster_client.ndarray(scene,
                                       bands=['red', 'green', 'blue'],
                                       scales=[[0, 255]] * 3,
                                       ot='Byte',
                                       dltile=dltile)
    # resnet50 expects the shape of the input array to be 4 dimensional, which allows for batch
    # predictions.
    tile_for_prediction = tile[np.newaxis, :]
    pred = model.predict(tile_for_prediction)
    # get predicted class with a simple maximum of class probabilities.
    class_ = np.argmax(pred, 1)
    # create a new raster of the tile area with one channel of the prediction from the model.
    image = np.full(tile.shape[:-1], class_, dtype=np.uint16)
    # upload a tile of this "prediction" to catalog
    image_id = ':'.join([src_product_id, dltile.replace(':', '_')])
    catalog_client.upload_ndarray(image,
                                  dest_product_id,
                                  image_id,
                                  raster_meta=meta)
Beispiel #2
0
def fc_from_latlong(lat,
                    long,
                    start="2018-01-01",
                    end="2018-12-31",
                    platform="sentinel-2:L1C"):
    """
    Platforms:
    landsat = "landsat:LC08:01:RT:TOAR"
    sentinel2 = "sentinel-2:L1C"
    """

    aoi = aoi_from_latlon(lat, long)

    metadata_client = dl.Metadata()

    # Image Search
    fc = metadata_client.search(
        products=platform,
        geom=aoi,
        start_datetime=start,
        end_datetime=end,
        limit=365,
    )

    return fc
Beispiel #3
0
 def __init__(self,  aoi, 
              item_type=ItemType.PSScene4Band,
              product_id=None,
              title=None,
              description=None,
              overwrite=False,
              start_datetime=None,
              end_datetime=None,
              cloud_fraction=1,
              limit=None,
              order_id=None,
              api_key=None):
     
     self._planet = p.ClientV1(api_key=api_key)
     self._catalog = dl.Catalog()
     self._metadata = dl.Metadata()
     self._auth = dl.Auth()
     self._order_id = order_id
     self._title=title
     self._description=description
     self.stats = None
     self._running = False
     self._items = []
     self.uploads = []
     
     
     if self._running:
         raise Exception('Already processing')
     else:
         self._running = True
         
     self._start_datetime = start_datetime
     self._end_datetime = end_datetime
     self._cloud_fraction = cloud_fraction
     self._limit =limit
    
     self._get_items(aoi, [item_type.name])
     self._init_product(product_id, item_type=item_type, overwrite=overwrite)
    
     item_ids = [item['id'] for item in self._items]
     
     scenes = clip_and_download(aoi, item_ids, item_type.name, item_type.bundle, api_key, order_id=self._order_id)
     for scene_id, scene in scenes.items():
             
         
             with open(scene['metadata.json']) as meta_file:
                 metadata = json.load(meta_file)['properties']
             
             with open(scene['3B_AnalyticMS_metadata_clip.xml']) as xml_file:
                 xml_meta = xmltodict.parse(xml_file.read())
             for band in xml_meta['ps:EarthObservation']['gml:resultOf']['ps:EarthObservationResult']['ps:bandSpecificMetadata']:
                 metadata[f"band_{band['ps:bandNumber']}_radiometricScaleFactor"] = band['ps:radiometricScaleFactor']
                 metadata[f"band_{band['ps:bandNumber']}_reflectanceCoefficient"] = band['ps:reflectanceCoefficient']
             
             self._upload_image([str(scene[str(file_key)]) for file_key in item_type.files] , metadata, scene_id)
    def __init__(self, path_to_cities_geom, path_to_cities_info):
        self.path_to_cities_geom = path_to_cities_geom
        self.path_to_cities_info = path_to_cities_info

        self.cities_geometry = gpd.read_file(self.path_to_cities_geom)

        if os.path.exists(os.path.join(self.path_to_cities_info)):
            with open(os.path.join(self.path_to_cities_info), 'r') as infile:
                self.cities_info = json.loads(infile.read())
        else:
            self.cities_info = defaultdict(dict)
        self.raster_client = dl.Raster()
        self.metadata_client = dl.Metadata()

        self.pixel_area = 225
        self.tree_area = 50
        self.tree_profit = 1.5
Beispiel #5
0
"""Simple example of how to create a product, then add
some bands and imagery. We will use the included file `building_mask.tif`
as an example of some imagery you might want to upload with the catalog.
"""

import descarteslabs as dl
import os
from random import randint
from time import sleep

catalog_client = dl.Catalog()
metadata_client = dl.Metadata()
raster_client = dl.Raster()

# First step, create a product, which is a descriptive document you use to
# group related images.

product_id = catalog_client.add_product(
    "building_mask:osm:v0",
    title="OSM Building Mask",
    description=
    "Rasterized OSM building footprints from vector data. Quality varies regionally",
)["data"]["id"]

# Next we need to add bands. The core function of a band is to tell us how data
# is encoded in the imagery that you are going to upload. For these building
# masks there is only one file per scene, and each scene has one 8 bit band.

band_id = catalog_client.add_band(
    product_id=product_id,  # id of the product we just created.
    name="footprint",  # this is a unique name to describe what the band encodes.