Beispiel #1
0
def test_rrc(knn_methods):
    pool_classifiers, X_dsel, y_dsel, X_test, y_test = setup_classifiers()

    rrc = RRC(pool_classifiers, knn_classifier=knn_methods)
    rrc.fit(X_dsel, y_dsel)
    assert np.isclose(rrc.score(X_test, y_test), 0.97340425531914898)
Beispiel #2
0
    model_svc = SVC(probability=True).fit(X_train, y_train)
    model_bayes = GaussianNB().fit(X_train, y_train)
    model_tree = DecisionTreeClassifier().fit(X_train, y_train)
    model_knn = KNeighborsClassifier(n_neighbors=5).fit(X_train, y_train)
    pool_classifiers = [
        model_perceptron, model_linear_svm, model_svc, model_bayes, model_tree,
        model_knn
    ]

    # Initializing the DS techniques
    knop = KNOP(pool_classifiers)
    rrc = RRC(pool_classifiers)
    lca = LCA(pool_classifiers)
    mcb = MCB(pool_classifiers)
    aposteriori = APosteriori(pool_classifiers)

    # Fitting the techniques
    knop.fit(X_dsel, y_dsel)
    rrc.fit(X_dsel, y_dsel)
    lca.fit(X_dsel, y_dsel)
    mcb.fit(X_dsel, y_dsel)
    aposteriori.fit(X_dsel, y_dsel)

    # Calculate classification accuracy of each technique
    print('Evaluating DS techniques:')
    print('Classification accuracy KNOP: ', knop.score(X_test, y_test))
    print('Classification accuracy RRC: ', rrc.score(X_test, y_test))
    print('Classification accuracy LCA: ', lca.score(X_test, y_test))
    print('Classification accuracy A posteriori: ',
          aposteriori.score(X_test, y_test))