Beispiel #1
0
def test_brentsroot_wrong_order():
    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(True)

    a = D.array(1.0)
    b = D.array(1.0)

    gt_root = -b / a
    lb, ub = -b / a - 1, -b / a + 1

    fun = lambda x: a * x + b

    assert (D.to_numpy(D.to_float(D.abs(fun(gt_root)))) <= 32 * D.epsilon())

    root, success = de.utilities.optimizer.brentsroot(fun, [ub, lb],
                                                      4 * D.epsilon(),
                                                      verbose=True)

    assert (success)
    assert (np.allclose(D.to_numpy(D.to_float(gt_root)),
                        D.to_numpy(D.to_float(root)), 32 * D.epsilon(),
                        32 * D.epsilon()))
Beispiel #2
0
def test_addcmul_within_tolerance_out(ffmt):
    D.set_float_fmt(ffmt)
    pi = D.to_float(D.pi)
    out = D.copy(pi)
    D.addcmul(pi, D.to_float(3), D.to_float(2), value=1, out=out)
    assert (pi + (1 * (3 * 2)) - 2 * D.epsilon() <= out <= pi +
            (1 * (3 * 2)) + 2 * D.epsilon())
Beispiel #3
0
def test_newtonraphson_pytorch_jacobian(ffmt, tol):
    print("Set dtype to:", ffmt)
    D.set_float_fmt(ffmt)
    np.random.seed(21)

    if tol is not None:
        tol = tol * D.epsilon()

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(False)

    if ffmt == 'gdual_vdouble':
        pytest.skip("Root-finding is ill-conceived with vectorised gduals")

    for _ in range(10):
        ac_prod = D.array(np.random.uniform(0.9, 1.1))
        a = D.array(np.random.uniform(-1, 1))
        a = D.to_float(-1 * (a <= 0) + 1 * (a > 0))
        c = ac_prod / a
        b = D.sqrt(0.01 + 4 * ac_prod)

        gt_root1 = -b / (2 * a) - 0.1 / (2 * a)
        gt_root2 = -b / (2 * a) + 0.1 / (2 * a)

        ub = -b / (2 * a) - 0.2 / (2 * a)
        lb = -b / (2 * a) - 0.4 / (2 * a)

        x0 = D.array(np.random.uniform(ub, lb))

        fun = lambda x: a * x**2 + b * x + c

        assert (D.to_numpy(D.to_float(D.abs(fun(gt_root1)))) <=
                32 * D.epsilon())
        assert (D.to_numpy(D.to_float(D.abs(fun(gt_root2)))) <=
                32 * D.epsilon())

        root, (success, num_iter,
               prec) = de.utilities.optimizer.newtonraphson(fun,
                                                            x0,
                                                            tol=tol,
                                                            verbose=True)

        if tol is None:
            tol = D.epsilon()
        conv_root1 = np.allclose(D.to_numpy(D.to_float(gt_root1)),
                                 D.to_numpy(D.to_float(root)), 128 * tol,
                                 32 * tol)
        conv_root2 = np.allclose(D.to_numpy(D.to_float(gt_root2)),
                                 D.to_numpy(D.to_float(root)), 128 * tol,
                                 32 * tol)
        print(conv_root1, conv_root2, root, gt_root1, gt_root2, x0,
              root - gt_root1, root - gt_root2, num_iter, prec)

        assert (success)
        assert (conv_root1 or conv_root2)
        assert (D.to_numpy(D.to_float(D.abs(fun(root)))) <= 32 * tol)
Beispiel #4
0
def test_frac_within_tolerance_out(ffmt):
    D.set_float_fmt(ffmt)
    pi = D.to_float(D.pi)
    out = D.copy(pi)
    D.frac(pi, out=out)
    assert (0.141592653589793238 - 2 * D.epsilon() <= out <=
            0.141592653589793238 + 2 * D.epsilon())
def test_float_formats_typical_shape(ffmt, integrator,
                                     use_richardson_extrapolation, device):
    if use_richardson_extrapolation and integrator.__implicit__:
        pytest.skip(
            "Richardson Extrapolation is too slow with implicit methods")
    D.set_float_fmt(ffmt)

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(False)  # Enable if a test fails

        device = torch.device(device)

    print("Testing {} float format".format(D.float_fmt()))

    from .common import set_up_basic_system

    de_mat, rhs, analytic_soln, y_init, dt, _ = set_up_basic_system(
        integrator, hook_jacobian=True)

    y_init = D.array([1., 0.])

    if D.backend() == 'torch':
        y_init = y_init.to(device)

    a = de.OdeSystem(rhs,
                     y0=y_init,
                     dense_output=False,
                     t=(0, D.pi / 4),
                     dt=D.pi / 64,
                     rtol=D.epsilon()**0.5,
                     atol=D.epsilon()**0.5)

    method = integrator
    method_tolerance = a.atol * 10 + D.epsilon()
    if use_richardson_extrapolation:
        method = de.integrators.generate_richardson_integrator(method)
        method_tolerance = method_tolerance * 5

    with de.utilities.BlockTimer(section_label="Integrator Tests") as sttimer:
        a.set_method(method)
        print("Testing {} with dt = {:.4e}".format(a.integrator, a.dt))

        a.integrate(eta=True)

        print("Average step-size:",
              D.mean(D.abs(D.array(a.t[1:]) - D.array(a.t[:-1]))))
        max_diff = D.max(D.abs(analytic_soln(a.t[-1], y_init) - a.y[-1]))
        if a.integrator.adaptive:
            assert max_diff <= method_tolerance, "{} Failed with max_diff from analytical solution = {}".format(
                a.integrator, max_diff)
        if a.integrator.__implicit__:
            assert rhs.analytic_jacobian_called and a.njev > 0, "Analytic jacobian was called as part of integration"
        a.reset()
    print("")

    print("{} backend test passed successfully!".format(D.backend()))
Beispiel #6
0
def test_softplus_within_tolerance_out(ffmt):
    D.set_float_fmt(ffmt)
    pi = D.to_float(D.pi)
    out = D.copy(pi)
    D.softplus(pi, out=out)
    assert (3.18389890758499587775 - 2 * D.epsilon() <= out <=
            3.18389890758499587775 + 2 * D.epsilon())
Beispiel #7
0
def test_callback_called():
    de_mat = D.array([[0.0, 1.0], [-1.0, 0.0]])

    @de.rhs_prettifier("""[vx, -x+t]""")
    def rhs(t, state, **kwargs):
        return de_mat @ state + D.array([0.0, t])

    y_init = D.array([1., 0.])

    callback_called = False

    def callback(ode_sys):
        nonlocal callback_called
        if not callback_called and ode_sys.t[-1] > D.pi:
            callback_called = True

    a = de.OdeSystem(rhs,
                     y0=y_init,
                     dense_output=True,
                     t=(0, 2 * D.pi),
                     dt=0.01,
                     rtol=D.epsilon()**0.5,
                     atol=D.epsilon()**0.5)

    a.integrate(callback=callback)

    assert (callback_called)
Beispiel #8
0
def test_keyboard_interrupt_caught():
    de_mat = D.array([[0.0, 1.0], [-1.0, 0.0]])

    @de.rhs_prettifier("""[vx, -x+t]""")
    def rhs(t, state, **kwargs):
        return de_mat @ state + D.array([0.0, t])

    y_init = D.array([1., 0.])

    def kb_callback(ode_sys):
        if ode_sys.t[-1] > D.pi:
            raise KeyboardInterrupt()

    a = de.OdeSystem(rhs,
                     y0=y_init,
                     dense_output=True,
                     t=(0, 2 * D.pi),
                     dt=0.01,
                     rtol=D.epsilon()**0.5,
                     atol=D.epsilon()**0.5)

    with pytest.raises(KeyboardInterrupt):
        a.integrate(callback=kb_callback)

    assert (a.integration_status ==
            "A KeyboardInterrupt exception was raised during integration.")
Beispiel #9
0
def test_non_callable_rhs(ffmt):
    with pytest.raises(TypeError):
        D.set_float_fmt(ffmt)

        if D.backend() == 'torch':
            import torch

            torch.set_printoptions(precision=17)

            torch.autograd.set_detect_anomaly(True)

        print("Testing {} float format".format(D.float_fmt()))

        from . import common

        (de_mat, rhs, analytic_soln, y_init, dt,
         _) = common.set_up_basic_system()

        a = de.OdeSystem(de_mat,
                         y0=y_init,
                         dense_output=False,
                         t=(0, 2 * D.pi),
                         dt=dt,
                         rtol=D.epsilon()**0.5,
                         atol=D.epsilon()**0.5,
                         constants=dict(k=1.0))

        a.tf = 0.0
Beispiel #10
0
def test_dt_dir_fix(ffmt):
    D.set_float_fmt(ffmt)

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(True)

    print("Testing {} float format".format(D.float_fmt()))

    de_mat = D.array([[0.0, 1.0], [-1.0, 0.0]])

    @de.rhs_prettifier("""[vx, -x+t]""")
    def rhs(t, state, k, **kwargs):
        return de_mat @ state + D.array([0.0, t])

    y_init = D.array([1., 0.])

    a = de.OdeSystem(rhs,
                     y0=y_init,
                     dense_output=False,
                     t=(0, 2 * D.pi),
                     dt=-0.01,
                     rtol=D.epsilon()**0.5,
                     atol=D.epsilon()**0.5,
                     constants=dict(k=1.0))
Beispiel #11
0
def test_square_within_tolerance_out(ffmt):
    D.set_float_fmt(ffmt)
    pi = D.to_float(D.pi)
    out = D.copy(pi)
    D.square(pi, out=out)
    assert (9.8696044010893586188 - 2 * D.epsilon() <= out <=
            9.8696044010893586188 + 2 * D.epsilon())
Beispiel #12
0
def test_brentsroot():
    for fmt in D.available_float_fmt():
        print("Set dtype to:", fmt)
        D.set_float_fmt(fmt)
        for _ in range(10):
            ac_prod = D.array(np.random.uniform(0.9, 1.1))
            a = D.array(np.random.uniform(-1, 1))
            a = D.to_float(-1 * (a <= 0) + 1 * (a > 0))
            c = ac_prod / a
            b = D.sqrt(0.01 + 4 * ac_prod)

            gt_root = -b / (2 * a) - 0.1 / (2 * a)

            ub = -b / (2 * a)
            lb = -b / (2 * a) - 1.0 / (2 * a)

            fun = lambda x: a * x**2 + b * x + c

            assert (D.to_numpy(D.to_float(D.abs(fun(gt_root)))) <=
                    32 * D.epsilon())

            root, success = de.utilities.optimizer.brentsroot(fun, [lb, ub],
                                                              4 * D.epsilon(),
                                                              verbose=True)

            assert (success)
            assert (np.allclose(D.to_numpy(D.to_float(gt_root)),
                                D.to_numpy(D.to_float(root)), 32 * D.epsilon(),
                                32 * D.epsilon()))
            assert (D.to_numpy(D.to_float(D.abs(fun(root)))) <=
                    32 * D.epsilon())
Beispiel #13
0
def test_brentsroot_same_sign():
    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(True)

    ac_prod = D.array(np.random.uniform(0.9, 1.1))
    a = D.array(1.0)
    b = D.array(1.0)

    gt_root = -b / a
    lb, ub = -b / a - 1, -b / a - 2

    fun = lambda x: a * x + b

    assert (D.to_numpy(D.to_float(D.abs(fun(gt_root)))) <= 32 * D.epsilon())

    root, success = de.utilities.optimizer.brentsroot(fun, [lb, ub],
                                                      4 * D.epsilon(),
                                                      verbose=True)

    assert (np.isinf(root))
    assert (not success)
Beispiel #14
0
def test_jacobian_wrapper_exact(ffmt):
    D.set_float_fmt(ffmt)
    rhs     = lambda x: D.exp(-x)
    drhs_exact = lambda x: -D.exp(-x)
    jac_rhs = de.utilities.JacobianWrapper(rhs, rtol=D.epsilon() ** 0.5, atol=D.epsilon() ** 0.5)
    
    x = D.array(0.0)
    
    assert (D.allclose(D.to_float(drhs_exact(x)), D.to_float(jac_rhs(x)), rtol=4 * D.epsilon() ** 0.5, atol=4 * D.epsilon() ** 0.5))
Beispiel #15
0
def test_newtonraphson_dims(ffmt, tol, dim):
    print("Set dtype to:", ffmt)
    D.set_float_fmt(ffmt)
    np.random.seed(30)

    if tol is not None:
        tol = tol * D.epsilon()

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(False)

    if ffmt == 'gdual_vdouble':
        pytest.skip("Root-finding is ill-conceived with vectorised gduals")

    shift = D.array(np.random.uniform(1, 10, size=(dim, )))
    exponent = D.array(np.random.uniform(1, 5, size=(dim, )))
    gt_root1 = shift**(1 / exponent)
    gt_root2 = -shift**(1 / exponent)

    def fun(x):
        return x**exponent - shift

    def jac(x):
        return D.diag(exponent * D.reshape(x, (-1, ))**(exponent - 1))

    x0 = D.array(np.random.uniform(1, 3, size=(dim, )))
    print(gt_root1, gt_root2)
    print(x0)
    print(fun(x0))
    print(jac(x0))

    root, (success, num_iter,
           prec) = de.utilities.optimizer.newtonraphson(fun,
                                                        x0,
                                                        jac=jac,
                                                        tol=tol,
                                                        verbose=True)

    if tol is None:
        tol = D.epsilon()
    assert (success)
    conv_root1 = D.stack([
        D.array(np.allclose(D.to_numpy(D.to_float(r1)),
                            D.to_numpy(D.to_float(r)), 128 * tol, 32 * tol),
                dtype=D.bool) for r, r1 in zip(root, gt_root1)
    ])
    conv_root2 = D.stack([
        D.array(np.allclose(D.to_numpy(D.to_float(r2)),
                            D.to_numpy(D.to_float(r)), 128 * tol, 32 * tol),
                dtype=D.bool) for r, r2 in zip(root, gt_root2)
    ])
    assert (D.all(conv_root1 | conv_root2))
def test_integration_and_representation():

    for ffmt in D.available_float_fmt():
        D.set_float_fmt(ffmt)

        print("Testing {} float format".format(D.float_fmt()))

        de_mat = D.array([[0.0, 1.0], [-1.0, 0.0]])

        @de.rhs_prettifier("""[vx, -x+t]""")
        def rhs(t, state, k, **kwargs):
            return de_mat @ state + D.array([0.0, t])

        def analytic_soln(t, initial_conditions):
            c1 = initial_conditions[0]
            c2 = initial_conditions[1] - 1

            return D.stack([
                c2 * D.sin(D.to_float(D.asarray(t))) +
                c1 * D.cos(D.to_float(D.asarray(t))) + D.asarray(t),
                c2 * D.cos(D.to_float(D.asarray(t))) -
                c1 * D.sin(D.to_float(D.asarray(t))) + 1
            ])

        def kbinterrupt_cb(ode_sys):
            if ode_sys[-1][0] > D.pi:
                raise KeyboardInterrupt("Test Interruption and Catching")

        y_init = D.array([1., 0.])

        a = de.OdeSystem(rhs,
                         y0=y_init,
                         dense_output=True,
                         t=(0, 2 * D.pi),
                         dt=0.01,
                         rtol=D.epsilon()**0.5,
                         atol=D.epsilon()**0.5,
                         constants=dict(k=1.0))

        a.integrate()

        try:
            print(str(a))
            print(repr(a))
            assert (D.max(D.abs(a.sol(a.t[0]) - y_init)) <=
                    8 * D.epsilon()**0.5)
            assert (D.max(
                D.abs(a.sol(a.t[-1]) - analytic_soln(a.t[-1], y_init))) <=
                    8 * D.epsilon()**0.5)
            assert (D.max(D.abs(a.sol(a.t).T - analytic_soln(a.t, y_init))) <=
                    8 * D.epsilon()**0.5)
        except:
            raise
Beispiel #17
0
def test_not_enough_time_values():
    for ffmt in D.available_float_fmt():
        D.set_float_fmt(ffmt)

        print("Testing {} float format".format(D.float_fmt()))

        de_mat = D.array([[0.0, 1.0],[-1.0, 0.0]])

        @de.rhs_prettifier("""[vx, -x+t]""")
        def rhs(t, state, k, **kwargs):
            return de_mat @ state + D.array([0.0, t])

        def analytic_soln(t, initial_conditions):
            c1 = initial_conditions[0]
            c2 = initial_conditions[1] - 1
            
            return D.stack([
                c2 * D.sin(D.to_float(D.asarray(t))) + c1 * D.cos(D.to_float(D.asarray(t))) + D.asarray(t),
                c2 * D.cos(D.to_float(D.asarray(t))) - c1 * D.sin(D.to_float(D.asarray(t))) + 1
            ])

        y_init = D.array([1., 0.])

        a = de.OdeSystem(rhs, y0=y_init, dense_output=False, t=(0,), dt=0.01, rtol=D.epsilon()**0.5, atol=D.epsilon()**0.5, constants=dict(k=1.0))
        
        a.tf = 0.0
Beispiel #18
0
def test_matrix_inv():
    A = D.array([
        [-1.0, 3 / 2],
        [1.0, -1.0],
    ], dtype=D.float64)
    Ainv = D.matrix_inv(A)
    assert (D.max(D.abs(D.to_float(Ainv @ A - D.eye(2)))) <= 8 * D.epsilon())
Beispiel #19
0
def test_integration_and_representation():
    for ffmt in D.available_float_fmt():
        D.set_float_fmt(ffmt)

        print("Testing {} float format".format(D.float_fmt()))

        de_mat = D.array([[0.0, 1.0],[-1.0, 0.0]])

        @de.rhs_prettifier("""[vx, -x+t]""")
        def rhs(t, state, k, **kwargs):
            return de_mat @ state + D.array([0.0, t])

        def analytic_soln(t, initial_conditions):
            c1 = initial_conditions[0]
            c2 = initial_conditions[1] - 1
            
            return D.stack([
                c2 * D.sin(D.to_float(D.asarray(t))) + c1 * D.cos(D.to_float(D.asarray(t))) + D.asarray(t),
                c2 * D.cos(D.to_float(D.asarray(t))) - c1 * D.sin(D.to_float(D.asarray(t))) + 1
            ])

        y_init = D.array([1., 0.])

        a = de.OdeSystem(rhs, y0=y_init, dense_output=True, t=(0, 2*D.pi), dt=0.01, rtol=D.epsilon()**0.5, atol=D.epsilon()**0.5, constants=dict(k=1.0))
        
        assert(a.integration_status() == "Integration has not been run.")
        
        a.integrate()
        
        assert(a.integration_status() == "Integration completed successfully.")

        try:
            print(str(a))
            print(repr(a))
            assert(D.max(D.abs(a.sol(a.t[0]) - y_init)) <= 8*D.epsilon()**0.5)
            assert(D.max(D.abs(a.sol(a.t[-1]) - analytic_soln(a.t[-1], y_init))) <= 8*D.epsilon()**0.5)
            assert(D.max(D.abs(a.sol(a.t).T - analytic_soln(a.t, y_init))) <= 8*D.epsilon()**0.5)
        except:
            raise
            
        for i in a:
            assert(D.max(D.abs(i.y - analytic_soln(i.t, y_init))) <= 8*D.epsilon()**0.5)
            
        assert(len(a.y) == len(a))
        assert(len(a.t) == len(a))
Beispiel #20
0
def test_brentsrootvec(ffmt, tol):
    print("Set dtype to:", ffmt)
    D.set_float_fmt(ffmt)
    if tol is not None:
        tol = tol * D.epsilon()

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(True)

    if ffmt == 'gdual_vdouble':
        pytest.skip("Root-finding is ill-conceived with vectorised gduals")

    for _ in range(10):
        slope_list = D.array(
            np.copysign(np.random.uniform(0.9, 1.1, size=25),
                        np.random.uniform(-1, 1, size=25)))
        intercept_list = slope_list

        gt_root_list = -intercept_list / slope_list

        fun_list = [(lambda m, b: lambda x: m * x + b)(m, b)
                    for m, b in zip(slope_list, intercept_list)]

        assert (all(
            map((lambda i: D.to_numpy(D.to_float(D.abs(i))) <= 32 * D.epsilon(
            )), map((lambda x: x[0](x[1])), zip(fun_list, gt_root_list)))))

        root_list, success = de.utilities.optimizer.brentsrootvec(
            fun_list, [D.min(gt_root_list) - 1.,
                       D.max(gt_root_list) + 1.],
            tol,
            verbose=True)

        assert (np.all(D.to_numpy(success)))
        assert (np.allclose(D.to_numpy(D.to_float(gt_root_list)),
                            D.to_numpy(D.to_float(root_list)),
                            32 * D.epsilon(), 32 * D.epsilon()))

        assert (all(
            map((lambda i: D.to_numpy(D.to_float(D.abs(i))) <= 32 * D.epsilon(
            )), map((lambda x: x[0](x[1])), zip(fun_list, root_list)))))
Beispiel #21
0
def test_contract_first_ndims_case_2(ffmt):
    arr1 = D.array([[2.0, 1.0], [1.0, 0.0]])
    arr2 = D.array([[1.0, 1.0], [-1.0, 1.0]])

    arr4 = D.contract_first_ndims(arr1, arr2, 2)

    true_arr4 = D.array(2.)

    assert (D.norm(arr4 - true_arr4) <= 2 * D.epsilon())
Beispiel #22
0
def test_contract_first_ndims_case_1(ffmt):
    arr1 = D.array([[2.0, 1.0], [1.0, 0.0]])
    arr2 = D.array([[1.0, 1.0], [-1.0, 1.0]])

    arr3 = D.contract_first_ndims(arr1, arr2, 1)

    true_arr3 = D.array([1.0, 1.0])

    assert (D.norm(arr3 - true_arr3) <= 2 * D.epsilon())
Beispiel #23
0
def set_up_basic_system(integrator=None, hook_jacobian=False):
    de_mat = D.array([[0.0, 1.0], [-1.0, 0.0]])

    @de.rhs_prettifier("""[vx, -x+t]""")
    def rhs(t, state, **kwargs):
        nonlocal de_mat
        if D.backend() == 'torch':
            de_mat = de_mat.to(state.device)
        out = de_mat @ state
        out[1] += t
        return out
    
    if hook_jacobian:
        def rhs_jac(t, state, **kwargs):
            nonlocal de_mat
            rhs.analytic_jacobian_called = True
            if D.backend() == 'torch':
                de_mat = de_mat.to(state.device)
            return de_mat

        rhs.hook_jacobian_call(rhs_jac)

    def analytic_soln(t, initial_conditions):
        c1 = initial_conditions[0]
        c2 = initial_conditions[1] - 1.0

        return D.stack([
            c2 * D.sin(D.to_float(D.asarray(t))) + c1 * D.cos(D.to_float(D.asarray(t))) + D.asarray(t),
            c2 * D.cos(D.to_float(D.asarray(t))) - c1 * D.sin(D.to_float(D.asarray(t))) + 1
        ])

    y_init = D.array([1., 0.])

    a = de.OdeSystem(rhs, y0=y_init, dense_output=True, t=(0, 2 * D.pi), dt=0.01, rtol=D.epsilon()**0.75,
                     atol=D.epsilon()**0.75)
    a.set_kick_vars(D.array([0,1],dtype=D.bool))
    if integrator is None:
        integrator = a.method
    dt = (D.epsilon() ** 0.5)**(1.0/(2+integrator.order))/(2*D.pi)
    a.dt = dt

    return de_mat, rhs, analytic_soln, y_init, dt, a
Beispiel #24
0
def test_brentsroot(ffmt, tol):
    print("Set dtype to:", ffmt)
    D.set_float_fmt(ffmt)

    if tol is not None:
        tol = tol * D.epsilon()

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(True)

    for _ in range(10):
        ac_prod = D.array(np.random.uniform(0.9, 1.1))
        a = D.array(np.random.uniform(-1, 1))
        a = D.to_float(-1 * (a <= 0) + 1 * (a > 0))
        c = ac_prod / a
        b = D.sqrt(0.01 + 4 * ac_prod)

        gt_root = -b / (2 * a) - 0.1 / (2 * a)

        ub = -b / (2 * a)
        lb = -b / (2 * a) - 1.0 / (2 * a)

        fun = lambda x: a * x**2 + b * x + c

        assert (D.to_numpy(D.to_float(D.abs(fun(gt_root)))) <=
                32 * D.epsilon())

        root, success = de.utilities.optimizer.brentsroot(fun, [lb, ub],
                                                          tol,
                                                          verbose=True)

        assert (success)
        assert (np.allclose(D.to_numpy(D.to_float(gt_root)),
                            D.to_numpy(D.to_float(root)), 32 * D.epsilon(),
                            32 * D.epsilon()))
        assert (D.to_numpy(D.to_float(D.abs(fun(root)))) <= 32 * D.epsilon())
def test_event_detection():
    for ffmt in D.available_float_fmt():
        if ffmt == 'float16':
            continue
        D.set_float_fmt(ffmt)

        print("Testing event detection for float format {}".format(D.float_fmt()))

        de_mat = D.array([[0.0, 1.0],[-1.0, 0.0]])

        @de.rhs_prettifier("""[vx, -x+t]""")
        def rhs(t, state, **kwargs):    
            return de_mat @ state + D.array([0.0, t])

        def analytic_soln(t, initial_conditions):
            c1 = initial_conditions[0]
            c2 = initial_conditions[1] - 1

            return D.array([
                c2 * D.sin(t) + c1 * D.cos(t) + t,
                c2 * D.cos(t) - c1 * D.sin(t) + 1
            ])
        
        y_init = D.array([1., 0.])

        def time_event(t, y, **kwargs):
            return t - D.pi/8
        
        time_event.is_terminal = True
        time_event.direction   = 0

        a = de.OdeSystem(rhs, y0=y_init, dense_output=True, t=(0, D.pi/4), dt=0.01, rtol=D.epsilon()**0.5, atol=D.epsilon()**0.5)

        with de.utilities.BlockTimer(section_label="Integrator Tests") as sttimer:
            for i in sorted(set(de.available_methods(False).values()), key=lambda x:x.__name__):
                try:
                    a.set_method(i)
                    print("Testing {}".format(a.integrator))
                    a.integrate(eta=True, events=time_event)

                    if D.abs(a.t[-1] - D.pi/8) > 10*D.epsilon():
                        print("Event detection with integrator {} failed with t[-1] = {}".format(a.integrator, a.t[-1]))
                        raise RuntimeError("Failed to detect event for integrator {}".format(str(i)))
                    else:
                        print("Event detection with integrator {} succeeded with t[-1] = {}".format(a.integrator, a.t[-1]))
                    a.reset()
                except Exception as e:
                    raise e
                    raise RuntimeError("Test failed for integration method: {}".format(a.integrator))
            print("")

        print("{} backend test passed successfully!".format(D.backend()))
Beispiel #26
0
def test_integration_and_nearest_float_no_dense_output(ffmt):
    D.set_float_fmt(ffmt)

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(True)

    print("Testing {} float format".format(D.float_fmt()))

    de_mat = D.array([[0.0, 1.0], [-1.0, 0.0]])

    @de.rhs_prettifier("""[vx, -x+t]""")
    def rhs(t, state, k, **kwargs):
        return de_mat @ state + D.array([0.0, t])

    y_init = D.array([1., 0.])

    a = de.OdeSystem(rhs,
                     y0=y_init,
                     dense_output=False,
                     t=(0, 2 * D.pi),
                     dt=0.01,
                     rtol=D.epsilon()**0.5,
                     atol=D.epsilon()**0.5,
                     constants=dict(k=1.0))

    assert (a.integration_status == "Integration has not been run.")

    a.integrate()

    assert (a.sol is None)

    assert (a.integration_status == "Integration completed successfully.")

    assert (D.abs(a.t[-2] - a[2 * D.pi].t) <= D.abs(a.dt))
Beispiel #27
0
def test_matrix_inv_bigger():
    for diag_size in range(2, 101):
        np.random.seed(15)
        for trial in range(3):
            A = np.random.normal(size=(diag_size, diag_size))
            while np.abs(np.linalg.det(D.to_float(A))) <= 1e-5:
                A = np.random.normal(size=(diag_size, diag_size), std=250.0)
            A = D.array(D.cast_to_float_fmt(A))
            Ainv = D.matrix_inv(A)
            assert (
                D.max(D.abs(D.to_float(Ainv @ A - D.eye(diag_size)))) <=
                4 * D.epsilon()**0.5
            ), "Matrix inversion failed for diagonal with size: " + str(
                diag_size)
Beispiel #28
0
def test_brentsrootvec():
    for fmt in D.available_float_fmt():
        print("Set dtype to:", fmt)
        D.set_float_fmt(fmt)
        if fmt == 'gdual_vdouble':
            continue
        for _ in range(10):
            slope_list = D.array(
                np.copysign(np.random.uniform(0.9, 1.1, size=25),
                            np.random.uniform(-1, 1, size=25)))
            intercept_list = slope_list

            gt_root_list = -intercept_list / slope_list

            fun_list = [(lambda m, b: lambda x: m * x + b)(m, b)
                        for m, b in zip(slope_list, intercept_list)]

            assert (all(
                map((lambda i: D.to_numpy(D.to_float(D.abs(i))) <= 32 * D.
                     epsilon()),
                    map((lambda x: x[0](x[1])), zip(fun_list, gt_root_list)))))

            root_list, success = de.utilities.optimizer.brentsrootvec(
                fun_list, [D.min(gt_root_list) - 1.,
                           D.max(gt_root_list) + 1.],
                4 * D.epsilon(),
                verbose=True)

            assert (np.all(D.to_numpy(success)))
            assert (np.allclose(D.to_numpy(D.to_float(gt_root_list)),
                                D.to_numpy(D.to_float(root_list)),
                                32 * D.epsilon(), 32 * D.epsilon()))

            assert (all(
                map((lambda i: D.to_numpy(D.to_float(D.abs(i))) <= 32 * D.
                     epsilon()),
                    map((lambda x: x[0](x[1])), zip(fun_list, root_list)))))
Beispiel #29
0
def test_integration_and_representation(ffmt):
    D.set_float_fmt(ffmt)

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(True)

    print("Testing {} float format".format(D.float_fmt()))

    from . import common

    (de_mat, rhs, analytic_soln, y_init, dt, a) = common.set_up_basic_system()

    assert (a.integration_status == "Integration has not been run.")

    a.integrate()

    assert (a.integration_status == "Integration completed successfully.")

    print(str(a))
    print(repr(a))
    assert (D.max(D.abs(a.sol(a.t[0]) - y_init)) <= 8 * D.epsilon()**0.5)
    assert (D.max(D.abs(a.sol(a.t[-1]) - analytic_soln(a.t[-1], y_init))) <=
            8 * D.epsilon()**0.5)
    assert (D.max(D.abs(a.sol(a.t).T - analytic_soln(a.t, y_init))) <=
            8 * D.epsilon()**0.5)

    for i in a:
        assert (D.max(D.abs(i.y - analytic_soln(i.t, y_init))) <=
                8 * D.epsilon()**0.5)

    assert (len(a.y) == len(a))
    assert (len(a.t) == len(a))
Beispiel #30
0
def test_float_formats_atypical_shape(ffmt, integrator,
                                      use_richardson_extrapolation, device):
    if use_richardson_extrapolation and integrator.__implicit__:
        pytest.skip(
            "Richardson Extrapolation is too slow with implicit methods")
    D.set_float_fmt(ffmt)

    if D.backend() == 'torch':
        import torch

        torch.set_printoptions(precision=17)

        torch.autograd.set_detect_anomaly(False)  # Enable if a test fails

        device = torch.device(device)

    print("Testing {} float format".format(D.float_fmt()))

    from .common import set_up_basic_system

    de_mat, _, analytic_soln, y_init, dt, _ = set_up_basic_system(integrator)

    @de.rhs_prettifier("""[vx, -x+t]""")
    def rhs(t, state, **kwargs):
        nonlocal de_mat
        extra = D.array([0.0, t])
        if D.backend() == 'torch':
            de_mat = de_mat.to(state.device)
            extra = extra.to(state.device)
        return D.sum(de_mat[:, :, None, None, None] * state,
                     axis=1) + extra[:, None, None, None]

    y_init = D.array([[[[1., 0.]] * 1] * 1] * 3).T

    print(rhs(0.0, y_init).shape)

    if D.backend() == 'torch':
        y_init = y_init.contiguous().to(device)

    a = de.OdeSystem(rhs,
                     y0=y_init,
                     dense_output=False,
                     t=(0, D.pi / 4),
                     dt=D.pi / 64,
                     rtol=D.epsilon()**0.5,
                     atol=D.epsilon()**0.5)

    method = integrator
    method_tolerance = a.atol * 10 + D.epsilon()
    if use_richardson_extrapolation:
        method = de.integrators.generate_richardson_integrator(method)
        method_tolerance = method_tolerance * 5

    with de.utilities.BlockTimer(section_label="Integrator Tests") as sttimer:
        a.set_method(method)
        print("Testing {} with dt = {:.4e}".format(a.integrator, a.dt))

        a.integrate(eta=True)

        max_diff = D.max(D.abs(analytic_soln(a.t[-1], y_init) - a.y[-1]))
        if a.integrator.adaptive:
            assert max_diff <= method_tolerance, "{} Failed with max_diff from analytical solution = {}".format(
                a.integrator, max_diff)
        a.reset()
    print("")

    print("{} backend test passed successfully!".format(D.backend()))