help="Specifies Determined Experiment configuration.", default="{}", ) parser.add_argument("--mode", dest="mode", help="Specifies local mode or cluster mode.", default="cluster") args = parser.parse_args() config = { "data": { "url": "https://s3-us-west-2.amazonaws.com/determined-ai-test-data/pytorch_mnist.tar.gz" }, "hyperparameters": { "learning_rate": det.Log(minval=-3.0, maxval=-1.0, base=10), "dropout": det.Double(minval=0.2, maxval=0.8), "global_batch_size": det.Constant(value=64), "n_filters1": det.Constant(value=32), "n_filters2": det.Constant(value=32), }, "searcher": { "name": "single", "metric": "validation_error", "max_steps": 20, "smaller_is_better": True, }, } config.update(json.loads(args.config)) experimental.create(
if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--config", dest="config", help="Specifies Determined Experiment configuration.", default="{}", ) parser.add_argument( "--mode", dest="mode", help="Specifies local mode or cluster mode.", default="cluster" ) args = parser.parse_args() config = { "hyperparameters": { "learning_rate": det.Log(-4.0, -2.0, 10), "global_batch_size": det.Constant(64), "hidden_layer_1": det.Constant(250), "hidden_layer_2": det.Constant(250), "hidden_layer_3": det.Constant(250), "dropout": det.Double(0.0, 0.5), }, "searcher": { "name": "single", "metric": "accuracy", "max_steps": 10, "smaller_is_better": False, }, } config.update(json.loads(args.config))