Beispiel #1
0
def main(argv):
    del argv  # unused arg
    tf.enable_v2_behavior()
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.experimental.TPUStrategy(resolver)

    ind_dataset_builder = ub.datasets.ClincIntentDetectionDataset(
        batch_size=FLAGS.per_core_batch_size,
        eval_batch_size=FLAGS.per_core_batch_size,
        data_mode='ind')
    ood_dataset_builder = ub.datasets.ClincIntentDetectionDataset(
        batch_size=FLAGS.per_core_batch_size,
        eval_batch_size=FLAGS.per_core_batch_size,
        data_mode='ood')

    dataset_builders = {
        'clean': ind_dataset_builder,
        'out_of_scope_requests': ood_dataset_builder
    }

    train_dataset = ind_dataset_builder.build(
        split=ub.datasets.base.Split.TRAIN)

    ds_info = ind_dataset_builder.info
    feature_size = ds_info['feature_size']
    # num_classes is number of valid intents plus out-of-scope intent
    num_classes = ds_info['num_classes'] + 1
    # vocab_size is total number of valid tokens plus the out-of-vocabulary token.
    vocab_size = ind_dataset_builder.tokenizer.num_words + 1

    batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    steps_per_epoch = ds_info['num_train_examples'] // batch_size

    test_datasets = {}
    steps_per_eval = {}
    for dataset_name, dataset_builder in dataset_builders.items():
        test_datasets[dataset_name] = dataset_builder.build(
            split=ub.datasets.base.Split.TEST)
        steps_per_eval[dataset_name] = (
            dataset_builder.info['num_test_examples'] // batch_size)

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    premade_embedding_array = None
    if FLAGS.word_embedding_dir:
        with tf.io.gfile.GFile(FLAGS.word_embedding_dir,
                               'rb') as embedding_file:
            premade_embedding_array = np.load(embedding_file)

    with strategy.scope():
        logging.info('Building %s model', FLAGS.model_family)
        if FLAGS.model_family.lower() == 'textcnn':
            model = cnn_model.textcnn(
                filter_sizes=FLAGS.filter_sizes,
                num_filters=FLAGS.num_filters,
                num_classes=num_classes,
                feature_size=feature_size,
                vocab_size=vocab_size,
                embed_size=FLAGS.embedding_size,
                dropout_rate=FLAGS.dropout_rate,
                l2=FLAGS.l2,
                premade_embedding_arr=premade_embedding_array)
            optimizer = tf.keras.optimizers.Adam(FLAGS.base_learning_rate)
        elif FLAGS.model_family.lower() == 'bert':
            bert_config_dir, bert_ckpt_dir = resolve_bert_ckpt_and_config_dir(
                FLAGS.bert_dir, FLAGS.bert_config_dir, FLAGS.bert_ckpt_dir)
            bert_config = bert_model.create_config(bert_config_dir)
            model, bert_encoder = bert_model.create_model(
                num_classes=num_classes,
                feature_size=feature_size,
                bert_config=bert_config)
            optimizer = bert_model.create_optimizer(
                FLAGS.base_learning_rate,
                steps_per_epoch=steps_per_epoch,
                epochs=FLAGS.train_epochs,
                warmup_proportion=FLAGS.warmup_proportion)
        else:
            raise ValueError(
                'model_family ({}) can only be TextCNN or BERT.'.format(
                    FLAGS.model_family))

        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())

        metrics = {
            'train/negative_log_likelihood':
            tf.keras.metrics.Mean(),
            'train/accuracy':
            tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss':
            tf.keras.metrics.Mean(),
            'train/ece':
            ed.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood':
            tf.keras.metrics.Mean(),
            'test/accuracy':
            tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece':
            ed.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
        }

        for dataset_name, test_dataset in test_datasets.items():
            if dataset_name != 'clean':
                metrics.update({
                    'test/nll_{}'.format(dataset_name):
                    tf.keras.metrics.Mean(),
                    'test/accuracy_{}'.format(dataset_name):
                    tf.keras.metrics.SparseCategoricalAccuracy(),
                    'test/ece_{}'.format(dataset_name):
                    ed.metrics.ExpectedCalibrationError(
                        num_bins=FLAGS.num_bins)
                })

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch
        elif FLAGS.model_family.lower() == 'bert':
            # load BERT from initial checkpoint
            bert_checkpoint = tf.train.Checkpoint(model=bert_encoder)
            bert_checkpoint.restore(
                bert_ckpt_dir).assert_existing_objects_matched()
            logging.info('Loaded BERT checkpoint %s', bert_ckpt_dir)

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            features, labels = create_feature_and_label(
                inputs, feature_size, model_family=FLAGS.model_family)

            with tf.GradientTape() as tape:
                # Set learning phase to enable dropout etc during training.
                logits = model(features, training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)
                negative_log_likelihood = tf.reduce_mean(
                    tf.keras.losses.sparse_categorical_crossentropy(
                        labels, logits, from_logits=True))
                l2_loss = sum(model.losses)
                loss = negative_log_likelihood + l2_loss
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            probs = tf.nn.softmax(logits)
            metrics['train/ece'].update_state(labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, logits)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            features, labels = create_feature_and_label(
                inputs, feature_size, model_family=FLAGS.model_family)

            # Set learning phase to disable dropout etc during eval.
            logits = model(features, training=False)
            if FLAGS.use_bfloat16:
                logits = tf.cast(logits, tf.float32)
            probs = tf.nn.softmax(logits)
            negative_log_likelihood = tf.reduce_mean(
                tf.keras.losses.sparse_categorical_crossentropy(labels, probs))

            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            else:
                metrics['test/nll_{}'.format(dataset_name)].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy_{}'.format(dataset_name)].update_state(
                    labels, probs)
                metrics['test/ece_{}'.format(dataset_name)].update_state(
                    labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        if epoch % FLAGS.evaluation_interval == 0:
            for dataset_name, test_dataset in test_datasets.items():
                test_iterator = iter(test_dataset)
                logging.info('Testing on dataset %s', dataset_name)
                for step in range(steps_per_eval[dataset_name]):
                    if step % 20 == 0:
                        logging.info(
                            'Starting to run eval step %s of epoch: %s', step,
                            epoch)
                    test_step(test_iterator, dataset_name)
                logging.info('Done with testing on %s', dataset_name)

            logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                         metrics['train/loss'].result(),
                         metrics['train/accuracy'].result() * 100)
            logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                         metrics['test/negative_log_likelihood'].result(),
                         metrics['test/accuracy'].result() * 100)
            total_results = {
                name: metric.result()
                for name, metric in metrics.items()
            }
            with summary_writer.as_default():
                for name, result in total_results.items():
                    tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)
Beispiel #2
0
def main(argv):
    del argv  # unused arg
    if not FLAGS.use_gpu:
        raise ValueError('Only GPU is currently supported.')
    if FLAGS.num_cores > 1:
        raise ValueError('Only a single accelerator is currently supported.')
    tf.enable_v2_behavior()
    tf.random.set_seed(FLAGS.seed)
    tf.io.gfile.makedirs(FLAGS.output_dir)

    ind_dataset_builder = ub.datasets.ClincIntentDetectionDataset(
        batch_size=FLAGS.per_core_batch_size,
        eval_batch_size=FLAGS.per_core_batch_size,
        dataset_dir=FLAGS.dataset_dir,
        data_mode='ind')
    ood_dataset_builder = ub.datasets.ClincIntentDetectionDataset(
        batch_size=FLAGS.per_core_batch_size,
        eval_batch_size=FLAGS.per_core_batch_size,
        dataset_dir=FLAGS.dataset_dir,
        data_mode='ood')

    dataset_builders = {
        'clean': ind_dataset_builder,
        'ood': ood_dataset_builder
    }

    ds_info = ind_dataset_builder.info
    feature_size = ds_info['feature_size']
    # num_classes is number of valid intents plus out-of-scope intent
    num_classes = ds_info['num_classes'] + 1
    # vocab_size is total number of valid tokens plus the out-of-vocabulary token.
    vocab_size = ind_dataset_builder.tokenizer.num_words + 1

    batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores

    test_datasets = {}
    steps_per_eval = {}
    for dataset_name, dataset_builder in dataset_builders.items():
        test_datasets[dataset_name] = dataset_builder.build(
            split=ub.datasets.base.Split.TEST)
        steps_per_eval[dataset_name] = (
            dataset_builder.info['num_test_examples'] // batch_size)

    if FLAGS.model_family.lower() == 'textcnn':
        model = cnn_model.textcnn(filter_sizes=FLAGS.filter_sizes,
                                  num_filters=FLAGS.num_filters,
                                  num_classes=num_classes,
                                  feature_size=feature_size,
                                  vocab_size=vocab_size,
                                  embed_size=FLAGS.embedding_size,
                                  dropout_rate=FLAGS.dropout_rate,
                                  l2=FLAGS.l2)
    elif FLAGS.model_family.lower() == 'bert':
        bert_config_dir, _ = deterministic.resolve_bert_ckpt_and_config_dir(
            FLAGS.bert_dir, FLAGS.bert_config_dir, FLAGS.bert_ckpt_dir)
        bert_config = bert_model.create_config(bert_config_dir)
        model, _ = bert_model.create_model(num_classes=num_classes,
                                           feature_size=feature_size,
                                           bert_config=bert_config)
    else:
        raise ValueError(
            'model_family ({}) can only be TextCNN or BERT.'.format(
                FLAGS.model_family))

    logging.info('Model input shape: %s', model.input_shape)
    logging.info('Model output shape: %s', model.output_shape)
    logging.info('Model number of weights: %s', model.count_params())

    # Search for checkpoints from their index file; then remove the index suffix.
    ensemble_filenames = tf.io.gfile.glob(
        os.path.join(FLAGS.checkpoint_dir, '**/*.index'))
    ensemble_filenames = [filename[:-6] for filename in ensemble_filenames]
    ensemble_size = len(ensemble_filenames)
    logging.info('Ensemble size: %s', ensemble_size)
    logging.info('Ensemble number of weights: %s',
                 ensemble_size * model.count_params())
    logging.info('Ensemble filenames: %s', str(ensemble_filenames))
    checkpoint = tf.train.Checkpoint(model=model)

    # Write model predictions to files.
    num_datasets = len(test_datasets)
    for m, ensemble_filename in enumerate(ensemble_filenames):
        checkpoint.restore(ensemble_filename)
        for n, (name, test_dataset) in enumerate(test_datasets.items()):
            filename = '{dataset}_{member}.npy'.format(dataset=name, member=m)
            filename = os.path.join(FLAGS.output_dir, filename)
            if not tf.io.gfile.exists(filename):
                logits = []
                test_iterator = iter(test_dataset)
                for _ in range(steps_per_eval[name]):
                    inputs = next(test_iterator)
                    features, _ = deterministic.create_feature_and_label(
                        inputs, feature_size, model_family=FLAGS.model_family)
                    logits.append(model(features, training=False))

                logits = tf.concat(logits, axis=0)
                with tf.io.gfile.GFile(filename, 'w') as f:
                    np.save(f, logits.numpy())
            percent = (m * num_datasets +
                       (n + 1)) / (ensemble_size * num_datasets)
            message = (
                '{:.1%} completion for prediction: ensemble member {:d}/{:d}. '
                'Dataset {:d}/{:d}'.format(percent, m + 1, ensemble_size,
                                           n + 1, num_datasets))
            logging.info(message)

    metrics = {
        'test/negative_log_likelihood': tf.keras.metrics.Mean(),
        'test/gibbs_cross_entropy': tf.keras.metrics.Mean(),
        'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        'test/ece':
        ed.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
    }

    for dataset_name, test_dataset in test_datasets.items():
        if dataset_name != 'clean':
            metrics.update({
                'test/nll_{}'.format(dataset_name):
                tf.keras.metrics.Mean(),
                'test/accuracy_{}'.format(dataset_name):
                tf.keras.metrics.SparseCategoricalAccuracy(),
                'test/ece_{}'.format(dataset_name):
                ed.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins)
            })

    # Evaluate model predictions.
    for n, (name, test_dataset) in enumerate(test_datasets.items()):
        logits_dataset = []
        for m in range(ensemble_size):
            filename = '{dataset}_{member}.npy'.format(dataset=name, member=m)
            filename = os.path.join(FLAGS.output_dir, filename)
            with tf.io.gfile.GFile(filename, 'rb') as f:
                logits_dataset.append(np.load(f))

        logits_dataset = tf.convert_to_tensor(logits_dataset)
        test_iterator = iter(test_dataset)
        for step in range(steps_per_eval[name]):
            inputs = next(test_iterator)
            _, labels = deterministic.create_feature_and_label(
                inputs, feature_size, model_family=FLAGS.model_family)
            logits = logits_dataset[:, (step * batch_size):((step + 1) *
                                                            batch_size)]
            labels = tf.cast(labels, tf.int32)
            negative_log_likelihood = tf.reduce_mean(
                ensemble_negative_log_likelihood(labels, logits))
            per_probs = tf.nn.softmax(logits)
            probs = tf.reduce_mean(per_probs, axis=0)
            if name == 'clean':
                gibbs_ce = tf.reduce_mean(gibbs_cross_entropy(labels, logits))
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/gibbs_cross_entropy'].update_state(gibbs_ce)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            else:
                metrics['test/nll_{}'.format(name)].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy_{}'.format(name)].update_state(
                    labels, probs)
                metrics['test/ece_{}'.format(name)].update_state(labels, probs)

        message = (
            '{:.1%} completion for evaluation: dataset {:d}/{:d}'.format(
                (n + 1) / num_datasets, n + 1, num_datasets))
        logging.info(message)

    total_results = {name: metric.result() for name, metric in metrics.items()}
    logging.info('Metrics: %s', total_results)