Beispiel #1
0
    def get_object_keys(self):
        dexnet_handle = DexNet()
        dexnet_handle.open_database(self.database_path)
        dexnet_handle.open_dataset(self.dataset_name)

        obj_keys = dexnet_handle.dataset.object_keys

        dexnet_handle.close_database()
        return obj_keys
    def database_delete_grasps(self, object_name):
        # load gripper
        gripper = RobotGripper.load(GRIPPER_NAME, gripper_dir='/home/silvia/dex-net/data/grippers')

        # open Dex-Net API
        dexnet_handle = DexNet()
        dexnet_handle.open_database(self.database_path)
        dexnet_handle.open_dataset(self.dataset_name)

        dexnet_handle.dataset.delete_grasps(object_name, gripper=gripper.name)

        dexnet_handle.close_database()
Beispiel #3
0
    def get_object_mesh(self, object_name):
        # load gripper
        gripper = RobotGripper.load(
            GRIPPER_NAME, gripper_dir='/home/silvia/dex-net/data/grippers')

        # open Dex-Net API
        dexnet_handle = DexNet()
        dexnet_handle.open_database(self.database_path)
        dexnet_handle.open_dataset(self.dataset_name)

        object_mesh = dexnet_handle.dataset.mesh(object_name)

        return object_mesh
Beispiel #4
0
    def get_stable_pose_transform(self, object_name, stable_pose_id):
        # load gripper
        gripper = RobotGripper.load(
            GRIPPER_NAME, gripper_dir='/home/silvia/dex-net/data/grippers')

        # open Dex-Net API
        dexnet_handle = DexNet()
        dexnet_handle.open_database(self.database_path)
        dexnet_handle.open_dataset(self.dataset_name)

        stable_pose = dexnet_handle.dataset.stable_pose(
            object_name, stable_pose_id=('pose_' + str(stable_pose_id)))

        dexnet_handle.close_database()

        return stable_pose
    def database_save(self, object_name, filepath, stable_poses_n, force_overwrite=False):
        # load gripper
        gripper = RobotGripper.load(GRIPPER_NAME, gripper_dir='/home/silvia/dex-net/data/grippers')

        # open Dex-Net API
        dexnet_handle = DexNet()
        dexnet_handle.open_database(self.database_path)
        dexnet_handle.open_dataset(self.dataset_name)

        mass = CONFIG['default_mass']

        if object_name in dexnet_handle.dataset.object_keys:
            graspable = dexnet_handle.dataset[object_name]
            mesh = graspable.mesh
            sdf = graspable.sdf
            stable_poses = dexnet_handle.dataset.stable_poses(object_name)
        else:
            # Create temp dir if cache dir is not provided
            mp_cache = CONFIG['cache_dir']
            del_cache = False
            if mp_cache is None:
                mp_cache = tempfile.mkdtemp()
                del_cache = True
            
            # open mesh preprocessor
            mesh_processor = MeshProcessor(filepath, mp_cache)
            mesh_processor.generate_graspable(CONFIG)
            mesh = mesh_processor.mesh
            sdf = mesh_processor.sdf
            stable_poses = mesh_processor.stable_poses[:stable_poses_n]

            # write graspable to database
            dexnet_handle.dataset.create_graspable(object_name, mesh, sdf, stable_poses, mass=mass)

        # write grasps to database
        grasps, metrics = antipodal_grasp_sampler_for_storing(mesh, sdf, stable_poses)
        id = 0
        for grasps_for_pose, metrics_for_pose in zip(grasps, metrics):
            if (grasps_for_pose == None):
                continue 
            dexnet_handle.dataset.store_grasps_and_metrics(object_name, grasps_for_pose, metrics_for_pose, 
                                                            gripper=gripper.name, stable_pose_id=('pose_'+str(id)), 
                                                            force_overwrite=force_overwrite)
            id = id + 1

        dexnet_handle.close_database()
Beispiel #6
0
    def delete_graspable(self, object_name):
        # open Dex-Net API
        dexnet_handle = DexNet()
        dexnet_handle.open_database(self.database_path)
        dexnet_handle.open_dataset(self.dataset_name)

        dexnet_handle.dataset.delete_graspable(object_name)

        # delete files related to object
        path_to_obj_file = ".dexnet/" + object_name
        if os.path.exists(path_to_obj_file + "_proc.sdf"):
            print("sdf file removed")
            os.remove(path_to_obj_file + "_proc.sdf")
        if os.path.exists(path_to_obj_file + "_proc.obj"):
            print("obj file removed")
            os.remove(path_to_obj_file + "_proc.obj")

        dexnet_handle.close_database()
    def get_stable_pose(self, object_name, stable_pose_id):
        # load gripper
        gripper = RobotGripper.load(GRIPPER_NAME, gripper_dir='/home/silvia/dex-net/data/grippers')

        # open Dex-Net API
        dexnet_handle = DexNet()
        dexnet_handle.open_database(self.database_path)
        dexnet_handle.open_dataset(self.dataset_name)

        # read the most robust grasp
        stable_pose = dexnet_handle.dataset.stable_pose(object_name, stable_pose_id=('pose_'+str(stable_pose_id)))

        dexnet_handle.close_database()

        pose_matrix = np.eye(4,4)
        pose_matrix[:3,:3] = stable_pose.T_obj_world.rotation
        pose_matrix[:3, 3] = stable_pose.T_obj_world.translation
        return pose_matrix
Beispiel #8
0
        to_frame='robot')

    # fake transformation from a known 3D object model frame of reference to the camera frame of reference
    # in practice this could be computed using point cloud registration
    T_obj_camera = RigidTransform(
        rotation=RigidTransform.random_rotation(),
        translation=RigidTransform.random_translation(),
        from_frame='obj',
        to_frame='camera')

    # load gripper
    gripper = RobotGripper.load(gripper_name)

    # open Dex-Net API
    dexnet_handle = DexNet()
    dexnet_handle.open_database(database_path)
    dexnet_handle.open_dataset(dataset_name)

    # read the most robust grasp
    sorted_grasps = dexnet_handle.dataset.sorted_grasps(object_name,
                                                        metric_name,
                                                        gripper=gripper_name)
    most_robust_grasp = sorted_grasps[0][
        0]  # Note: in general this step will require collision checking

    # transform into the robot reference frame for control
    T_gripper_obj = most_robust_grasp.gripper_pose(gripper)
    T_gripper_robot = T_camera_robot * T_obj_camera * T_gripper_obj

    # control the robot to move along a linear path to the desired pose, close the jaws, and lift!
Beispiel #9
0
    def read_grasps(self,
                    object_name,
                    stable_pose_id,
                    max_grasps=10,
                    visualize=False):
        # load gripper
        gripper = RobotGripper.load(
            GRIPPER_NAME, gripper_dir='/home/silvia/dex-net/data/grippers')

        # open Dex-Net API
        dexnet_handle = DexNet()
        dexnet_handle.open_database(self.database_path)
        dexnet_handle.open_dataset(self.dataset_name)

        # read the most robust grasp
        sorted_grasps, metrics = dexnet_handle.dataset.sorted_grasps(
            object_name,
            stable_pose_id=('pose_' + str(stable_pose_id)),
            metric='force_closure',
            gripper=gripper.name)

        if (len(sorted_grasps)) == 0:
            print('no grasps for this stable pose')
            if visualize:
                stable_pose = dexnet_handle.dataset.stable_pose(
                    object_name,
                    stable_pose_id=('pose_' + str(stable_pose_id)))
                obj = dexnet_handle.dataset.graspable(object_name)
                vis.figure()
                T_table_world = RigidTransform(from_frame='table',
                                               to_frame='world')
                T_obj_world = Visualizer3D.mesh_stable_pose(
                    obj.mesh.trimesh,
                    stable_pose.T_obj_world,
                    T_table_world=T_table_world,
                    color=(0.5, 0.5, 0.5),
                    style='surface',
                    plot_table=True,
                    dim=0.15)
                vis.show(False)
            return None, None

        contact_points = map(get_contact_points, sorted_grasps)

        # ------------------------ VISUALIZATION CODE ------------------------
        if visualize:
            low = np.min(metrics)
            high = np.max(metrics)
            if low == high:
                q_to_c = lambda quality: CONFIG['quality_scale']
            else:
                q_to_c = lambda quality: CONFIG['quality_scale'] * (
                    quality - low) / (high - low)

            stable_pose = dexnet_handle.dataset.stable_pose(
                object_name, stable_pose_id=('pose_' + str(stable_pose_id)))
            obj = dexnet_handle.dataset.graspable(object_name)
            vis.figure()

            T_table_world = RigidTransform(from_frame='table',
                                           to_frame='world')
            T_obj_world = Visualizer3D.mesh_stable_pose(
                obj.mesh.trimesh,
                stable_pose.T_obj_world,
                T_table_world=T_table_world,
                color=(0.5, 0.5, 0.5),
                style='surface',
                plot_table=True,
                dim=0.15)
            for grasp, metric in zip(sorted_grasps, metrics):
                color = plt.get_cmap('hsv')((q_to_c(metric)))[:-1]
                vis.grasp(grasp,
                          T_obj_world=stable_pose.T_obj_world,
                          grasp_axis_color=color,
                          endpoint_color=color)
            vis.show(False)
        # ------------------------ END VISUALIZATION CODE ---------------------------

        # ------------------------ START COLLISION CHECKING ---------------------------
        #stable_pose = dexnet_handle.dataset.stable_pose(object_name, stable_pose_id=('pose_'+str(stable_pose_id)))
        #graspable = dexnet_handle.dataset.graspable(object_name)
        #cc = GraspCollisionChecker(gripper).set_graspable_object(graspable, stable_pose.T_obj_world)
        stable_pose_matrix = self.get_stable_pose(object_name, stable_pose_id)
        # CLOSE DATABASE
        dexnet_handle.close_database()
        gripper_poses = []

        for grasp in sorted_grasps[:max_grasps]:
            gripper_pose_matrix = np.eye(4, 4)
            center_world = np.matmul(
                stable_pose_matrix,
                [grasp.center[0], grasp.center[1], grasp.center[2], 1])
            axis_world = np.matmul(
                stable_pose_matrix,
                [grasp.axis_[0], grasp.axis_[1], grasp.axis_[2], 1])
            gripper_angle = math.atan2(axis_world[1], axis_world[0])
            gripper_pose_matrix[:3, 3] = center_world[:3]
            gripper_pose_matrix[0, 0] = math.cos(gripper_angle)
            gripper_pose_matrix[0, 1] = -math.sin(gripper_angle)
            gripper_pose_matrix[1, 0] = math.sin(gripper_angle)
            gripper_pose_matrix[1, 1] = math.cos(gripper_angle)
            #if visualize:
            #    vis.figure()
            #    vis.gripper_on_object(gripper, grasp, obj, stable_pose=stable_pose.T_obj_world)
            #    vis.show(False)
            gripper_poses.append(gripper_pose_matrix)

        return contact_points, gripper_poses
Beispiel #10
0
    def database_save(self,
                      object_name,
                      filepath,
                      stable_poses_n,
                      metric,
                      overwrite_object=False,
                      force_overwrite=False):
        # load gripper
        gripper = RobotGripper.load(
            GRIPPER_NAME, gripper_dir='/home/silvia/dex-net/data/grippers')

        # open Dex-Net API
        dexnet_handle = DexNet()
        dexnet_handle.open_database(self.database_path)
        dexnet_handle.open_dataset(self.dataset_name)

        mass = CONFIG['default_mass']

        if object_name in dexnet_handle.dataset.object_keys:
            if not overwrite_object:
                dexnet_handle.close_database()
                print(object_name +
                      " already exists in database, not overwriting")
                return
            graspable = dexnet_handle.dataset[object_name]
            mesh = graspable.mesh
            sdf = graspable.sdf
            stable_poses = dexnet_handle.dataset.stable_poses(object_name)
        else:
            # Create temp dir if cache dir is not provided
            mp_cache = CONFIG['cache_dir']
            del_cache = False
            if mp_cache is None:
                mp_cache = tempfile.mkdtemp()
                del_cache = True

            # open mesh preprocessor
            graspable = MeshProcessor(filepath, mp_cache)
            graspable.generate_graspable(CONFIG)
            mesh = graspable.mesh
            sdf = graspable.sdf
            stable_poses = graspable.stable_poses[:stable_poses_n]

            # write graspable to database
            dexnet_handle.dataset.create_graspable(object_name,
                                                   mesh,
                                                   sdf,
                                                   stable_poses,
                                                   mass=mass)

        if force_overwrite:
            dexnet_handle.dataset.delete_grasps(object_name,
                                                gripper=gripper.name)

        # calculate or retrieve grasps
        loaded_grasps = dexnet_handle.dataset.grasps(object_name,
                                                     gripper=gripper.name)
        if loaded_grasps == []:
            print("No grasps in database, calculating")
            grasps = antipodal_grasp_sampler_for_storing(graspable)
            if (grasps != None):
                print("Saving grasps")
                dexnet_handle.dataset.store_grasps(
                    object_name,
                    grasps,
                    gripper=gripper.name,
                    force_overwrite=force_overwrite)
                loaded_grasps = dexnet_handle.dataset.grasps(
                    object_name, gripper=gripper.name)

        print("Calculating grasp quality")
        metrics = grasp_quality_calculator(mesh, sdf, loaded_grasps, metric)
        print("Grasp quality calculated")
        grasp_metrics = {}
        for g in loaded_grasps:
            grasp_metrics[g.id] = {}
            grasp_metrics[g.id][metric] = metrics[g.id]
        dexnet_handle.dataset.store_grasp_metrics(object_name,
                                                  grasp_metrics,
                                                  gripper=gripper.name)
        dexnet_handle.close_database()