def setUp(self): basis = Basis((1,1,1,0,0,-0.5), kind = 'triclinic') kp_gamma = numpy.array((0,0,0))[numpy.newaxis,:] kp_m = numpy.array((0.5, 0.0, 0))[numpy.newaxis,:] kp_k = numpy.array((2./3, 1./3, 0))[numpy.newaxis,:] kp_path = numpy.linspace(0,1,30)[:,numpy.newaxis] kp_path = numpy.concatenate(( kp_gamma*(1-kp_path) + kp_m*kp_path, kp_m*(1-kp_path) + kp_k*kp_path, kp_k*(1-kp_path) + kp_gamma*kp_path, ), axis = 0) d = (basis.transform_to_cartesian(kp_path)**2).sum(axis = 1) self.bands = UnitCell( basis, kp_path, ([[0,0,3]] + d[...,numpy.newaxis]*[[1,2,-3]])*eV, ) self.bands.meta["Fermi"] = 1*eV self.weights = self.bands.values/self.bands.values.max() self.huge_bands = UnitCell( self.bands, kp_path, ([BandPlotTest.__pseudo_random__(0,1000,50)*10-5] + d[...,numpy.newaxis]*[BandPlotTest.__pseudo_random__(1000,2000,50)*20-10])*eV, )
def setUp(self): basis = Basis((1,1,1,0,0,-0.5), kind = 'triclinic', meta = {"Fermi": 0}) kp_gamma = numpy.array((0,0,0))[numpy.newaxis,:] kp_m = numpy.array((0.5, 0.0, 0))[numpy.newaxis,:] kp_k = numpy.array((2./3, 1./3, 0))[numpy.newaxis,:] kp_path = numpy.linspace(0,1,30)[:,numpy.newaxis] kp_path = numpy.concatenate(( kp_gamma*(1-kp_path) + kp_m*kp_path, kp_m*(1-kp_path) + kp_k*kp_path, kp_k*(1-kp_path) + kp_gamma*kp_path, ), axis = 0) k = basis.transform_to_cartesian(kp_path)*math.pi/3.**.5*2 e = (1+4*numpy.cos(k[...,1])**2 + 4*numpy.cos(k[...,1])*numpy.cos(k[...,0]*3.**.5))**.5 self.cell = UnitCell( basis, kp_path, e[:,numpy.newaxis]*eV*[[-1.,1.]], ) self.cell_weights = self.cell.values/self.cell.values.max() self.grid = Grid( basis, (numpy.linspace(0,1,30, endpoint = False)+1./60,numpy.linspace(0,1,30, endpoint = False)+1./60,(0,)), numpy.zeros((30,30,1,2), dtype = numpy.float64), ) k = self.grid.cartesian()*math.pi/3.**.5*2 e = (1+4*numpy.cos(k[...,1])**2 + 4*numpy.cos(k[...,1])*numpy.cos(k[...,0]*3.**.5))**.5*eV self.grid.values[...,0] = -e self.grid.values[...,1] = e
def test_bands(self): c = Basis( numpy.array(((1.000000, -0.577350, 0.000000), (0.000000, 1.154701, 0.000000), (0.000000, 0.000000, 0.158745))) * 2 * math.pi / 5.999694 / numericalunits.aBohr) c = self.parser.bands(c) assert_standard_bands_path(c) assert c.values.shape == (400, 34) assert c.coordinates.shape == (400, 3) testing.assert_allclose(c.coordinates[0, :], (0.500000, -0.288675, 0.000000)) testing.assert_allclose( c.values[0, :], numpy.array( (0.500, -0.500, 0.185, -0.185, 0.248, -0.248, 0.067, -0.067, -0.498, 0.498, -0.498, 0.498, -0.500, 0.500, -0.499, 0.499, 0.500, -0.500, 0.499, -0.499, -0.498, 0.498, -0.498, 0.498, 0.499, -0.499, 0.499, -0.499, 0.496, -0.496, 0.496, -0.496, 0.499, -0.499)) * numericalunits.eV) testing.assert_allclose(c.coordinates[-1, :], (-0.503333, -0.282902, 0.000000)) testing.assert_allclose( c.values[-1, :], numpy.array( (0.500, -0.500, 0.185, -0.185, -0.250, 0.247, -0.065, 0.069, 0.497, -0.498, 0.498, -0.497, -0.500, 0.500, 0.499, -0.499, 0.500, -0.500, -0.499, 0.499, -0.498, 0.498, -0.497, 0.498, 0.499, -0.499, 0.499, -0.499, -0.496, 0.496, 0.496, -0.496, -0.499, 0.499)) * numericalunits.eV)
def setUp(self): self.cell = Cell( Basis.triclinic((2.5 * angstrom, 2.5 * angstrom, 10 * angstrom), (0, 0, .5)), ( (1. / 3, 1. / 3, .5), (2. / 3, 2. / 3, .5), ), ['C'] * 2, ).repeated(2, 2, 2) self.cell2 = Cell( Basis.triclinic( (3.9 * angstrom / 2, 3.9 * angstrom / 2, 3.9 * angstrom / 2), (.5, .5, .5)), (0, 0, 0), ['Si'], )
def setUp(self): self.cell = Cell( Basis((3.19 * angstrom, 3.19 * angstrom, 10 * angstrom, 0, 0, .5), kind='triclinic'), ( (1. / 3, 1. / 3, .5), (2. / 3, 2. / 3, .6), (2. / 3, 2. / 3, .4), ), ('Mo', 'S', 'S'), ).repeated(10, 10)
def test_wan90_input(self): _g = (2, 3, 2) self.maxDiff = None grid = uniform_grid(_g).reshape(-1, 3) cell = Cell(Basis.orthorhombic((2.5 * angstrom, 2.5 * angstrom, 10 * angstrom)), ( (1. / 3, 1. / 3, .5), (2. / 3, 2. / 3, .5), ), ['C'] * 2, ) self.assertEqual(wannier90_input( cell=cell, kpts=grid, kp_grid=_g, parameters={"some_str": "abc", "some_int": 3, "some_float": 3.0, "some_bool": True}, block_parameters={"some_block": "some_block"}, ), "\n".join(( "mp_grid = 2 3 2", "some_bool = .true.", "some_float = 3.000000e+00", "some_int = 3", "some_str = abc", "begin atoms_frac", " C 0.3333333333 0.3333333333 0.5000000000", " C 0.6666666667 0.6666666667 0.5000000000", "end atoms_frac", "begin kpoints", " 0.0000000000 0.0000000000 0.0000000000", " 0.0000000000 0.0000000000 0.5000000000", " 0.0000000000 0.3333333333 0.0000000000", " 0.0000000000 0.3333333333 0.5000000000", " 0.0000000000 0.6666666667 0.0000000000", " 0.0000000000 0.6666666667 0.5000000000", " 0.5000000000 0.0000000000 0.0000000000", " 0.5000000000 0.0000000000 0.5000000000", " 0.5000000000 0.3333333333 0.0000000000", " 0.5000000000 0.3333333333 0.5000000000", " 0.5000000000 0.6666666667 0.0000000000", " 0.5000000000 0.6666666667 0.5000000000", "end kpoints", "begin some_block", " some_block", "end some_block", "begin unit_cell_cart", " 2.5000000000 0.0000000000 0.0000000000", " 0.0000000000 2.5000000000 0.0000000000", " 0.0000000000 0.0000000000 10.0000000000", "end unit_cell_cart", )))
def setUp(self): self.cell = Cell( Basis.triclinic((2.5 * angstrom, 2.5 * angstrom, 10 * angstrom), (0, 0, .5)), ( (1. / 3, 1. / 3, .5), (2. / 3, 2. / 3, .5), ), ['C'] * 2, ) coords = (numpy.linspace(0, 1, 11, endpoint=False), numpy.linspace(0, 1, 13, endpoint=False), numpy.linspace(0, 1, 17, endpoint=False)) self.grid = Grid( self.cell, coords, numpy.zeros((11, 13, 17)), ) self.grid = self.grid.copy(values=numpy.prod(numpy.sin(self.grid.explicit_coordinates * 2 * numpy.pi), axis=-1))
def test_qe_input(self): cell = Cell(Basis.orthorhombic((2.5 * angstrom, 2.5 * angstrom, 10 * angstrom)), ( (1. / 3, 1. / 3, .5), (2. / 3, 2. / 3, .5), ), ['C'] * 2, ) self.assertEqual(qe_input( cell=cell, relax_mask=3, parameters={"system": {"a": 3}, "control": {"b": "c"}, "random": {"d": True}}, inline_parameters={"random": "hello"}, pseudopotentials={"C": "C.UPF"}, masses={"C": 3}, ), "\n".join(( "&CONTROL", " b = 'c'", "/", "&SYSTEM", " a = 3", " ibrav = 0", " nat = 2", " ntyp = 1", "/", "ATOMIC_SPECIES", " C 3.000 C.UPF", "ATOMIC_POSITIONS crystal", " C 0.33333333333333 0.33333333333333 0.50000000000000 3 3 3", " C 0.66666666666667 0.66666666666667 0.50000000000000 3 3 3", "CELL_PARAMETERS angstrom", " 2.50000000000000e+00 0.00000000000000e+00 0.00000000000000e+00", " 0.00000000000000e+00 2.50000000000000e+00 0.00000000000000e+00", " 0.00000000000000e+00 0.00000000000000e+00 1.00000000000000e+01", "RANDOM hello", " d = .true.", ))) self.assertEqual(qe_input( cell=cell, relax_mask=(0, 1), pseudopotentials={"C": "C.UPF"}, ), "\n".join(( "&SYSTEM", " ibrav = 0", " nat = 2", " ntyp = 1", "/", "ATOMIC_SPECIES", " C 12.011 C.UPF", "ATOMIC_POSITIONS crystal", " C 0.33333333333333 0.33333333333333 0.50000000000000 0 0 0", " C 0.66666666666667 0.66666666666667 0.50000000000000 1 1 1", "CELL_PARAMETERS angstrom", " 2.50000000000000e+00 0.00000000000000e+00 0.00000000000000e+00", " 0.00000000000000e+00 2.50000000000000e+00 0.00000000000000e+00", " 0.00000000000000e+00 0.00000000000000e+00 1.00000000000000e+01", ))) self.assertEqual(qe_input( parameters=dict( inputpp=dict(plot_num=3, prefix="tmd"), plot=dict(fileout='something.xsf', iflag=3), ) ), "\n".join(( "&INPUTPP", " plot_num = 3", " prefix = 'tmd'", "/", "&PLOT", " fileout = 'something.xsf'", " iflag = 3", "/", )))
from dfttools.types import Basis, Cell from dfttools.presentation import svgwrite_unit_cell from numericalunits import angstrom as a mos2_basis = Basis( (3.19*a, 3.19*a, 20*a, 0,0,.5), kind = 'triclinic' ) d = 1.57722483162840/20 # Unit cell with 3 atoms mos2_cell = Cell(mos2_basis, ( (1./3,1./3,.5), (2./3,2./3,0.5+d), (2./3,2./3,0.5-d), ), ('Mo','S','S')) # Rectangular supercell with 6 atoms mos2_rectangular = mos2_cell.supercell( (1,0,0), (-1,2,0), (0,0,1) ) # Rectangular sheet with a defect mos2_defect = mos2_rectangular.normalized() mos2_defect.discard((mos2_defect.values == "S") * (mos2_defect.coordinates[:,1] < .5) * (mos2_defect.coordinates[:,2] < .5)) # Prepare a sheet mos2_sheet = Cell.stack(*((mos2_rectangular,)*3 + (mos2_defect,) + (mos2_rectangular,)*3), vector = 'y')
from dfttools.types import Basis, Cell from dfttools.presentation import svgwrite_unit_cell from numericalunits import angstrom as a si_basis = Basis((3.9 * a / 2, 3.9 * a / 2, 3.9 * a / 2, .5, .5, .5), kind='triclinic') si_cell = Cell(si_basis, (.5, .5, .5), 'Si') svgwrite_unit_cell(si_cell, 'output.svg', size=(440, 360), show_cell=True)
from dfttools.types import Basis, Cell from dfttools import presentation from matplotlib import pyplot from numericalunits import eV import numpy # A reciprocal basis basis = Basis((1, 1, 1, 0, 0, -0.5), kind='triclinic', meta={"Fermi": 0}) # G-K path kp = numpy.linspace(0, 1, 100)[:, numpy.newaxis] * numpy.array( ((1. / 3, 2. / 3, 0), )) # A dummy grid Cell with correct kp-path bands = Cell( basis, kp, numpy.zeros((100, 2), dtype=numpy.float64), ) # Calculate graphene band k = bands.cartesian() * numpy.pi / 3.**.5 * 2 e = (1 + 4 * numpy.cos(k[..., 1])**2 + 4 * numpy.cos(k[..., 1]) * numpy.cos(k[..., 0] * 3.**.5))**.5 * eV # Set the band values bands.values[..., 0] = -e bands.values[..., 1] = e # Assign some weights
from dfttools.types import Basis, Cell from dfttools.presentation import svgwrite_unit_cell from numericalunits import angstrom as a graphene_basis = Basis( (2.46*a, 2.46*a, 6.7*a, 0,0,.5), kind = 'triclinic' ) # Unit cell graphene_cell = Cell(graphene_basis, ( (1./3,1./3,.5), (2./3,2./3,.5), ), ('C','C')) # Moire matching vectors moire = [1, 26, 6, 23] # A top layer l1 = graphene_cell.supercell( (moire[0],moire[1],0), (-moire[1],moire[0]+moire[1],0), (0,0,1) ) # A bottom layer l2 = graphene_cell.supercell( (moire[2],moire[3],0), (-moire[3],moire[2]+moire[3],0), (0,0,1)
from dfttools.types import Basis, Grid from dfttools import presentation from numericalunits import angstrom from matplotlib import pyplot import numpy grid = Grid( Basis((1 * angstrom, 1 * angstrom, 1 * angstrom, 0, 0, -0.5), kind='triclinic'), ( numpy.linspace(0, 1, 30, endpoint=False), numpy.linspace(0, 1, 30, endpoint=False), numpy.linspace(0, 1, 30, endpoint=False), ), numpy.zeros((30, 30, 30)), ) grid.values = numpy.prod(numpy.sin(grid.explicit_coordinates() * 2 * numpy.pi), axis=-1) presentation.matplotlib_scalar(grid, pyplot.gca(), (0.1, 0.1, 0.1), 'z', show_cell=True) pyplot.show()