Beispiel #1
0
def main():
    opt = parse_option()
    set_seed(opt.seed)
    transform = get_color_mnist_transform()

    ds_train = get_predefined_dataset(dataset_name='color_mnist',
                                      root='./dataset/colour_mnist',
                                      weights=None,
                                      major_ratio=0.5,
                                      num_data=opt.num_data)

    dataloader = data.DataLoader(dataset=ds_train,
                                 batch_size=128,
                                 shuffle=False,
                                 num_workers=8,
                                 pin_memory=True)

    model = SimpleConvNet(num_labels=20).cuda()
    model.cuda()

    optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer, [opt.epochs * 3 // 7, opt.epochs * 6 // 7], gamma=0.1)
    print(f'train_biased_model - opt: {optimizer}, sched: {scheduler}')

    ckpt_path = Path(
        f'./exp_results/color-mnist-convnet-{opt.num_data}-seed{opt.seed}')
    ckpt_path.mkdir(exist_ok=True, parents=True)

    for n in range(1, opt.epochs + 1):
        train_acc = train(model, dataloader, optimizer)
        print(f'[{n} / {opt.epochs}] train_acc: {train_acc}')

        if n % 10 == 0:
            torch.save(model.state_dict(), ckpt_path / f'ckpt_{n}.pt')
Beispiel #2
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset", "-d", default="color_mnist", type=str)
    parser.add_argument("--root",
                        "-r",
                        default="./dataset/colour_mnist",
                        type=str,
                        help="dataset dir")
    parser.add_argument("--baseline_exp_path", default="color_mnist", type=str)
    parser.add_argument("--resample_exp_path", default="color_mnist", type=str)
    parser.add_argument('--p2_step', default=20000, type=int)
    parser.add_argument('--major_ratio', default=0.99, type=float)
    parser.add_argument('--num_data', default=10000, type=int)
    args = parser.parse_args()

    baseline_exp_path = Path(args.baseline_exp_path)
    resample_exp_path = Path(args.resample_exp_path)

    baseline_ae_loss = np.load(
        baseline_exp_path /
        f'cae_checkpoints/{args.p2_step}_steps_seed1/cae_training_loss.npy')
    resample_ae_loss = np.load(
        resample_exp_path /
        f'cae_checkpoints/{args.p2_step}_steps_seed1/cae_training_loss.npy')
    baseline_ae = baseline_ae_loss[:, -1]
    resample_ae = resample_ae_loss[:, -1]

    ds_train = get_predefined_dataset(dataset_name=args.dataset,
                                      root=args.root,
                                      weights=None,
                                      major_ratio=args.major_ratio,
                                      num_data=args.num_data)

    idx_name = 'green'
    index = np.where(ds_train.dataset.biased_targets == 1)
    baseline_mean = baseline_ae[index].mean()
    resample_mean = resample_ae[index].mean()
    baseline_resample_diff = (resample_mean -
                              baseline_mean) / baseline_mean * 100
    print(
        f'{idx_name}, baseline_mean: {baseline_mean}, resample_mean: {resample_mean} diff: {baseline_resample_diff}%'
    )
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset", "-d", default="color_mnist", type=str)
    parser.add_argument("--root", "-r", default="./dataset/colour_mnist", type=str, help="dataset dir")
    parser.add_argument("--work_dir", default="./exp_results", type=str, help="output dir")
    parser.add_argument("--exp_name", default="colour_mnist", type=str, help="exp name")
    parser.add_argument("--baseline_exp_name", default="colour_mnist", type=str, help="exp name")
    parser.add_argument("--model", default="mnistgan", type=str, help="network model")
    parser.add_argument('--gpu', default='0', type=str,
                        help='id(s) for CUDA_VISIBLE_DEVICES')
    parser.add_argument('--num_pack', default=1, type=int)
    parser.add_argument('--batch_size', default=64, type=int)
    parser.add_argument('--seed', default=1, type=int)
    parser.add_argument('--num_steps', default=20000, type=int)
    parser.add_argument('--logit_save_steps', default=100, type=int)
    parser.add_argument('--decay', default='None', type=str)
    parser.add_argument('--n_dis', default=1, type=int)
    parser.add_argument('--p1_step', default=10000, type=int)
    parser.add_argument('--major_ratio', default=0.99, type=float)
    parser.add_argument('--num_data', default=10000, type=int)
    parser.add_argument('--resample_score', type=str)
    parser.add_argument("--loss_type", default="hinge", type=str, help="loss type")
    parser.add_argument('--use_eval_logits', type=int)
    args = parser.parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    output_dir = f'{args.work_dir}/{args.exp_name}'
    save_path = Path(output_dir)
    save_path.mkdir(parents=True, exist_ok=True)

    baseline_output_dir = f'{args.work_dir}/{args.baseline_exp_name}'
    baseline_save_path = Path(baseline_output_dir)

    prefix = args.exp_name.split('/')[-1]

    set_seed(args.seed)

    if torch.cuda.is_available():
        device = "cuda"
        cudnn.benchmark = True
    else:
        device = "cpu"

    netG, netD, netD_drs, optG, optD, optD_drs = get_gan_model(
        dataset_name=args.dataset,
        model=args.model,
        drs=True,
        loss_type=args.loss_type,
    )

    netG_ckpt_path = baseline_save_path / f'checkpoints/netG/netG_{args.p1_step}_steps.pth'
    netD_ckpt_path = baseline_save_path / f'checkpoints/netD/netD_{args.p1_step}_steps.pth'
    netD_drs_ckpt_path = baseline_save_path / f'checkpoints/netD/netD_{args.p1_step}_steps.pth'

    logit_path = baseline_save_path / ('logits_netD_eval.pkl' if args.use_eval_logits == 1 else 'logits_netD_train.pkl')
    print(f'Use logit from: {logit_path}')
    logits = pickle.load(open(logit_path, "rb"))
    score_start_step = args.p1_step - 5000
    score_end_step = args.p1_step
    score_dict = calculate_scores(logits, start_epoch=score_start_step, end_epoch=score_end_step)
    sample_weights = score_dict[args.resample_score]
    print(f'sample_weights mean: {sample_weights.mean()}, var: {sample_weights.var()}, max: {sample_weights.max()}, min: {sample_weights.min()}')


    print_num_params(netG, netD)

    ds_train = get_predefined_dataset(
        dataset_name=args.dataset,
        root=args.root,
        weights=None,
        major_ratio=args.major_ratio,
        num_data=args.num_data
    )
    dl_train = get_dataloader(
        ds_train,
        batch_size=args.batch_size,
        weights=sample_weights if args.resample_score is not None else None)
    dl_drs = get_dataloader(ds_train, batch_size=args.batch_size, weights=None)


    data_iter = iter(dl_train)
    imgs, _, _, _ = next(data_iter)
    plot_data(imgs, num_per_side=8, save_path=save_path, file_name=f'{prefix}_resampled_train_data_p2', vis=None)
    plot_score_sort(ds_train, score_dict, save_path=save_path, phase=f'{prefix}_{score_start_step}-{score_end_step}_score', plot_metric_name=args.resample_score)
    # plot_score_box(ds_train, score_dict, save_path=save_path, phase=f'{prefix}_{score_start_step}-{score_end_step}_box')

    print(args, netG_ckpt_path, netD_ckpt_path, netD_drs_ckpt_path)

    # Start training
    trainer = LogTrainer(
        output_path=save_path,
        logit_save_steps=args.logit_save_steps,
        netD=netD,
        netG=netG,
        optD=optD,
        optG=optG,
        netG_ckpt_file=netG_ckpt_path,
        netD_ckpt_file=netD_ckpt_path,
        netD_drs_ckpt_file=netD_drs_ckpt_path,
        netD_drs=netD_drs,
        optD_drs=optD_drs,
        dataloader_drs=dl_drs,
        n_dis=args.n_dis,
        num_steps=args.num_steps,
        save_steps=1000,
        vis_steps=100,
        lr_decay=args.decay,
        dataloader=dl_train,
        log_dir=output_dir,
        print_steps=10,
        device=device,
        save_logits=False,
    )
    trainer.train()

    plot_color_mnist_generator(netG, save_path=save_path, file_name=f'{prefix}-eval_p2')

    netG_drs = drs.DRS(netG, netD_drs, device=device)
    # for percentile in np.arange(50, 100, 5):
    # netG_drs.percentile = percentile
    percentile = 80
    plot_color_mnist_generator(netG_drs, save_path=save_path, file_name=f'{prefix}-eval_drs_percent{percentile}_p2')

    netG.restore_checkpoint(ckpt_file=netG_ckpt_path)
    netG.to(device)
    plot_color_mnist_generator(netG, save_path=save_path, file_name=f'{prefix}-eval_generated_p1')
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset", "-d", default="cifar10", type=str)
    parser.add_argument("--root", "-r", default="./dataset/cifar10", type=str, help="dataset dir")
    parser.add_argument("--work_dir", default="./exp_results", type=str, help="output dir")
    parser.add_argument("--exp_name", default="mimicry_pretrained-seed1", type=str, help="exp name")
    parser.add_argument('--gpu', default='0', type=str,
                        help='id(s) for CUDA_VISIBLE_DEVICES')
    parser.add_argument('--batch_size', default=128, type=int)
    parser.add_argument('--seed', default=1, type=int)
    parser.add_argument('--epochs', default=50, type=int)
    parser.add_argument("--netG_step", type=int)
    parser.add_argument("--netG_train_mode", action='store_true')
    parser.add_argument("--cae_ckpt_path", type=str)
    parser.add_argument("--model", type=str)
    parser.add_argument("--loss_type", default='ns', type=str)
    parser.add_argument("--generated_dataset_path", type=str)
    parser.add_argument('--major_ratio', default=0.99, type=float)
    parser.add_argument('--num_data', default=10000, type=int)
    parser.add_argument('--num_pack', default=1, type=int)
    parser.add_argument('--topk', action='store_true')
    args = parser.parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    output_dir = f'{args.work_dir}/{args.exp_name}'
    save_path = Path(output_dir)
    save_path.mkdir(parents=True, exist_ok=True)

    set_seed(args.seed)

    if torch.cuda.is_available():
        device = "cuda"
        cudnn.benchmark = True
    else:
        device = "cpu"
    
    
    if args.dataset == 'mnist_c':
        ds_test = get_predefined_dataset(
            dataset_name=args.dataset,
            root=args.root,
        )
    else:
        ds_test = get_predefined_dataset(
            dataset_name=args.dataset,
            root=args.root,
            major_ratio=args.major_ratio,
            num_data=args.num_data
        )
    dl_test = get_dataloader(dataset=ds_test, batch_size=args.batch_size)

    # load model
    assert args.netG_step
    print(f'load model from: {args.netG_step}')
    netG, _, netD_drs, _, _, _ = get_gan_model(
        args.dataset, 
        model=args.model,
        drs=True, 
        loss_type=args.loss_type, 
        topk=args.topk, 
        num_pack=args.num_pack,
        inclusive=True,
        num_data=args.num_data,
        dataloader=dl_test,)
    netG.to(device)
    netD_drs.to(device)
    netG.get_setting(train=False)

    step = netG.restore_checkpoint(ckpt_file=save_path / f'checkpoints/netG/netG_{args.netG_step}_steps.pth')

    netD_drs_ckpt_path = save_path / f'checkpoints/netD_drs/netD_drs_{args.netG_step}_steps.pth'
    if os.path.exists(netD_drs_ckpt_path):
        use_drs = True
        netD_drs.restore_checkpoint(ckpt_file=netD_drs_ckpt_path)
        netD_drs.to(device)
        drs = DRS(netG=netG, netD=netD_drs, device=device)
    else:
        use_drs = False
        drs = netG
        
    print(f'use drs: {use_drs}')
    


    model = get_ae_model(dataset_name=args.dataset).to(device)
    if args.cae_ckpt_path:
        model.load_state_dict(torch.load(args.cae_ckpt_path))
    else:
        if args.generated_dataset_path:
            print(f'skip data generation, use: {args.generated_dataset_path}')
            generated_dataset_path = args.generated_dataset_path
        else:
            # generate dataset
            generated_dataset_path = save_path / f'netG_{step}_steps_seed{args.seed}_generated_dataset.pkl'
            generate_dataset(drs, generated_dataset_path, eval_mode=not args.netG_train_mode, device=device)
            print(f'data generated in: {generated_dataset_path}')
        
        ds_train = get_generated_dataset(dataset_name=args.dataset, root=generated_dataset_path)
        dl_train = get_dataloader(dataset=ds_train, batch_size=args.batch_size)
        cae_ckpt_path = save_path / 'cae_checkpoints' / f'{step}_steps_seed{args.seed}'
        cae_ckpt_path.mkdir(parents=True, exist_ok=True)
        model = train_cae(model, dl_train=dl_train, dl_test=dl_test, save_path=cae_ckpt_path, epochs=args.epochs)

    final_loss = test_cae(dl_test, model)
    final_score = final_loss
    pickle.dump(final_score, open(save_path / f'netG_{step}_steps_seed{args.seed}_epoch{args.epochs}_ae_score.pkl', 'wb'))
    show_sorted_score_samples(
        dataset=ds_test,
        score=final_score,
        save_path=save_path,
        score_name='ae_score',
        plot_name=f'netG_{step}_steps_seed{args.seed}_epoch{args.epochs}_ae_score')
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset", "-d", default="color_mnist", type=str)
    parser.add_argument("--root",
                        "-r",
                        default="./dataset/colour_mnist",
                        type=str,
                        help="dataset dir")
    parser.add_argument("--work_dir",
                        default="./exp_results",
                        type=str,
                        help="output dir")
    parser.add_argument("--exp_name",
                        default="colour_mnist",
                        type=str,
                        help="exp name")
    parser.add_argument("--loss_type",
                        default="ns",
                        type=str,
                        help="loss type")
    parser.add_argument("--model",
                        default="mnist_dcgan",
                        type=str,
                        help="network model")
    parser.add_argument('--gpu',
                        default='0',
                        type=str,
                        help='id(s) for CUDA_VISIBLE_DEVICES')
    parser.add_argument('--num_pack', default=1, type=int)
    parser.add_argument('--batch_size', default=64, type=int)
    parser.add_argument('--seed', default=1, type=int)
    parser.add_argument('--use_clipping', action='store_true')
    parser.add_argument('--num_steps', default=20000, type=int)
    parser.add_argument('--logit_save_steps', default=100, type=int)
    parser.add_argument('--decay', default='None', type=str)
    parser.add_argument('--n_dis', default=1, type=int)
    parser.add_argument('--major_ratio', default=0.99, type=float)
    parser.add_argument('--num_data', default=10000, type=int)
    parser.add_argument('--topk', default=0, type=int)
    parser.add_argument('--resample_score', type=str)
    args = parser.parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    output_dir = f'{args.work_dir}/{args.exp_name}'
    save_path = Path(output_dir)
    save_path.mkdir(parents=True, exist_ok=True)

    set_seed(args.seed)

    if torch.cuda.is_available():
        device = "cuda"
        cudnn.benchmark = True
    else:
        device = "cpu"

    ds_train = get_predefined_dataset(dataset_name=args.dataset,
                                      root=args.root,
                                      weights=None,
                                      major_ratio=args.major_ratio,
                                      num_data=args.num_data)
    dl_train = get_dataloader(ds_train,
                              batch_size=args.batch_size,
                              weights=None)

    netG, netD, optG, optD = get_gan_model(
        dataset_name=args.dataset,
        model=args.model,
        num_pack=args.num_pack,
        loss_type=args.loss_type,
        topk=args.topk == 1,
        inclusive=True,
        num_data=args.num_data,
        dataloader=dl_train,
    )

    print_num_params(netG, netD)

    print(args)

    # Start training
    trainer = LogTrainer(
        output_path=save_path,
        logit_save_steps=args.logit_save_steps,
        netD=netD,
        netG=netG,
        optD=optD,
        optG=optG,
        n_dis=args.n_dis,
        num_steps=args.num_steps,
        save_steps=1000,
        vis_steps=100,
        lr_decay=args.decay,
        dataloader=dl_train,
        log_dir=output_dir,
        print_steps=10,
        device=device,
        topk=args.topk,
        save_logits=args.num_pack == 1,
        save_eval_logits=False,
    )
    trainer.train()

    plot_color_mnist_generator(netG, save_path=save_path, file_name='eval_p1')
Beispiel #6
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset", "-d", default="color_mnist", type=str)
    parser.add_argument("--root", "-r", default="./dataset/colour_mnist", type=str, help="dataset dir")
    parser.add_argument("--work_dir", default="./exp_results", type=str, help="output dir")
    parser.add_argument("--exp_name", default="colour_mnist", type=str, help="exp name")
    parser.add_argument("--baseline_exp_name", default="colour_mnist", type=str, help="exp name")
    parser.add_argument("--model", default="mnistgan", type=str, help="network model")
    parser.add_argument('--gpu', default='0', type=str,
                        help='id(s) for CUDA_VISIBLE_DEVICES')
    parser.add_argument('--num_pack', default=1, type=int)
    parser.add_argument('--batch_size', default=64, type=int)
    parser.add_argument('--seed', default=1, type=int)
    parser.add_argument('--use_clipping', action='store_true')
    parser.add_argument('--num_steps', default=20000, type=int)
    parser.add_argument('--logit_save_steps', default=100, type=int)
    parser.add_argument('--decay', default='None', type=str)
    parser.add_argument('--n_dis', default=1, type=int)
    parser.add_argument('--p1_step', default=10000, type=int)
    parser.add_argument('--major_ratio', default=0.99, type=float)
    parser.add_argument('--num_data', default=10000, type=int)
    parser.add_argument('--resample_score', type=str)
    parser.add_argument("--loss_type", default="hinge", type=str, help="loss type")
    args = parser.parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    output_dir = f'{args.work_dir}/{args.exp_name}'
    save_path = Path(output_dir)
    save_path.mkdir(parents=True, exist_ok=True)

    baseline_output_dir = f'{args.work_dir}/{args.baseline_exp_name}'
    baseline_save_path = Path(baseline_output_dir)

    prefix = args.exp_name.split('/')[-1]

    set_seed(args.seed)

    if torch.cuda.is_available():
        device = "cuda"
        cudnn.benchmark = True
    else:
        device = "cpu"

    netG, netD, optG, optD = get_gan_model(
        dataset_name=args.dataset,
        model=args.model,
        loss_type=args.loss_type,
        gold=True
    )

    netG_ckpt_path = baseline_save_path / f'checkpoints/netG/netG_{args.p1_step}_steps.pth'
    netD_ckpt_path = baseline_save_path / f'checkpoints/netD/netD_{args.p1_step}_steps.pth'

    print_num_params(netG, netD)

    ds_train = get_predefined_dataset(
        dataset_name=args.dataset,
        root=args.root,
        weights=None,
        major_ratio=args.major_ratio,
        num_data=args.num_data
    )
    dl_train = get_dataloader(
        ds_train,
        batch_size=args.batch_size,
        weights=None)

    data_iter = iter(dl_train)
    imgs, _, _, _ = next(data_iter)
    plot_data(imgs, num_per_side=8, save_path=save_path, file_name=f'{prefix}_gold_train_data_p2', vis=None)

    print(args, netG_ckpt_path, netD_ckpt_path)

    # Start training
    trainer = LogTrainer(
        output_path=save_path,
        logit_save_steps=args.logit_save_steps,
        netD=netD,
        netG=netG,
        optD=optD,
        optG=optG,
        netG_ckpt_file=netG_ckpt_path,
        netD_ckpt_file=netD_ckpt_path,
        n_dis=args.n_dis,
        num_steps=args.num_steps,
        save_steps=1000,
        vis_steps=100,
        lr_decay=args.decay,
        dataloader=dl_train,
        log_dir=output_dir,
        print_steps=10,
        device=device,
        save_logits=False,
        gold=True,
        gold_step=args.p1_step
    )
    trainer.train()

    plot_color_mnist_generator(netG, save_path=save_path, file_name=f'{prefix}-eval_p2')

    netG.restore_checkpoint(ckpt_file=netG_ckpt_path)
    netG.to(device)
    plot_color_mnist_generator(netG, save_path=save_path, file_name=f'{prefix}-eval_generated_p1')
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset", "-d", default="cifar10", type=str)
    parser.add_argument("--root",
                        "-r",
                        default="./dataset/cifar10",
                        type=str,
                        help="dataset dir")
    parser.add_argument("--work_dir",
                        default="./exp_results",
                        type=str,
                        help="output dir")
    parser.add_argument("--exp_name", type=str, help="exp name")
    parser.add_argument("--baseline_exp_name", type=str, help="exp name")
    parser.add_argument('--p1_step', default=40000, type=int)
    parser.add_argument("--model",
                        default="sngan",
                        type=str,
                        help="network model")
    parser.add_argument("--loss_type",
                        default="hinge",
                        type=str,
                        help="loss type")
    parser.add_argument('--gpu',
                        default='0',
                        type=str,
                        help='id(s) for CUDA_VISIBLE_DEVICES')
    parser.add_argument('--num_steps', default=80000, type=int)
    parser.add_argument('--batch_size', default=64, type=int)
    parser.add_argument('--seed', default=1, type=int)
    parser.add_argument('--decay', default='linear', type=str)
    parser.add_argument('--n_dis', default=5, type=int)
    parser.add_argument('--resample_score', type=str)
    parser.add_argument('--gold', action='store_true')
    parser.add_argument('--topk', action='store_true')
    args = parser.parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    output_dir = f'{args.work_dir}/{args.exp_name}'
    save_path = Path(output_dir)
    save_path.mkdir(parents=True, exist_ok=True)

    baseline_output_dir = f'{args.work_dir}/{args.baseline_exp_name}'
    baseline_save_path = Path(baseline_output_dir)

    set_seed(args.seed)

    if torch.cuda.is_available():
        device = "cuda"
        cudnn.benchmark = True
    else:
        device = "cpu"

    prefix = args.exp_name.split('/')[-1]

    if args.dataset == 'celeba':
        window = 5000
    elif args.dataset == 'cifar10':
        window = 5000
    else:
        window = 5000

    if not args.gold:
        logit_path = baseline_save_path / 'logits_netD_eval.pkl'
        print(f'Use logit from: {logit_path}')
        logits = pickle.load(open(logit_path, "rb"))
        score_start_step = (args.p1_step - window)
        score_end_step = args.p1_step
        score_dict = calculate_scores(logits,
                                      start_epoch=score_start_step,
                                      end_epoch=score_end_step)
        sample_weights = score_dict[args.resample_score]
        print(
            f'sample_weights mean: {sample_weights.mean()}, var: {sample_weights.var()}, max: {sample_weights.max()}, min: {sample_weights.min()}'
        )
    else:
        sample_weights = None

    netG_ckpt_path = baseline_save_path / f'checkpoints/netG/netG_{args.p1_step}_steps.pth'
    netD_ckpt_path = baseline_save_path / f'checkpoints/netD/netD_{args.p1_step}_steps.pth'

    netD_drs_ckpt_path = baseline_save_path / f'checkpoints/netD/netD_{args.p1_step}_steps.pth'
    netG, netD, netD_drs, optG, optD, optD_drs = get_gan_model(
        dataset_name=args.dataset,
        model=args.model,
        loss_type=args.loss_type,
        drs=True,
        topk=args.topk,
        gold=args.gold,
    )

    print(f'model: {args.model} - netD_drs_ckpt_path: {netD_drs_ckpt_path}')

    print_num_params(netG, netD)

    ds_train = get_predefined_dataset(dataset_name=args.dataset,
                                      root=args.root,
                                      weights=None)
    dl_train = get_dataloader(ds_train,
                              batch_size=args.batch_size,
                              weights=sample_weights)

    ds_drs = get_predefined_dataset(dataset_name=args.dataset,
                                    root=args.root,
                                    weights=None)
    dl_drs = get_dataloader(ds_drs, batch_size=args.batch_size, weights=None)

    if not args.gold:
        show_sorted_score_samples(ds_train,
                                  score=sample_weights,
                                  save_path=save_path,
                                  score_name=args.resample_score,
                                  plot_name=prefix)

    print(args)

    # Start training
    trainer = LogTrainer(
        output_path=save_path,
        netD=netD,
        netG=netG,
        optD=optD,
        optG=optG,
        netG_ckpt_file=str(netG_ckpt_path),
        netD_ckpt_file=str(netD_ckpt_path),
        netD_drs_ckpt_file=str(netD_drs_ckpt_path),
        netD_drs=netD_drs,
        optD_drs=optD_drs,
        dataloader_drs=dl_drs,
        n_dis=args.n_dis,
        num_steps=args.num_steps,
        save_steps=1000,
        lr_decay=args.decay,
        dataloader=dl_train,
        log_dir=output_dir,
        print_steps=10,
        device=device,
        topk=args.topk,
        gold=args.gold,
        gold_step=args.p1_step,
        save_logits=False,
    )
    trainer.train()
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset", "-d", default="cifar10", type=str)
    parser.add_argument("--root",
                        "-r",
                        default="./dataset/cifar10",
                        type=str,
                        help="dataset dir")
    parser.add_argument("--work_dir",
                        default="./exp_results",
                        type=str,
                        help="output dir")
    parser.add_argument("--exp_name",
                        default="cifar10",
                        type=str,
                        help="exp name")
    parser.add_argument("--model",
                        default="sngan",
                        type=str,
                        help="network model")
    parser.add_argument("--loss_type",
                        default="hinge",
                        type=str,
                        help="loss type")
    parser.add_argument('--gpu',
                        default='0',
                        type=str,
                        help='id(s) for CUDA_VISIBLE_DEVICES')
    parser.add_argument('--num_pack', default=1, type=int)
    parser.add_argument('--batch_size', default=64, type=int)
    parser.add_argument('--seed', default=1, type=int)
    parser.add_argument('--download_dataset', action='store_true')
    parser.add_argument('--topk', action='store_true')
    parser.add_argument('--num_steps', default=100000, type=int)
    parser.add_argument('--logit_save_steps', default=100, type=int)
    parser.add_argument('--decay', default='linear', type=str)
    parser.add_argument('--n_dis', default=5, type=int)
    parser.add_argument('--imb_factor', default=0.1, type=float)
    parser.add_argument('--celeba_class_attr', default='glass', type=str)
    parser.add_argument('--ckpt_step', type=int)
    parser.add_argument('--no_save_logits', action='store_true')
    parser.add_argument('--save_logit_after', default=30000, type=int)
    parser.add_argument('--stop_save_logit_after', default=60000, type=int)
    args = parser.parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    output_dir = f'{args.work_dir}/{args.exp_name}'
    save_path = Path(output_dir)
    save_path.mkdir(parents=True, exist_ok=True)

    set_seed(args.seed)

    if torch.cuda.is_available():
        device = "cuda"
        cudnn.benchmark = True
    else:
        device = "cpu"

    netG, netD, optG, optD = get_gan_model(
        dataset_name=args.dataset,
        model=args.model,
        loss_type=args.loss_type,
        topk=args.topk,
    )

    print_num_params(netG, netD)

    ds_train = get_predefined_dataset(
        dataset_name=args.dataset,
        root=args.root,
    )
    dl_train = get_dataloader(ds_train, batch_size=args.batch_size)

    if args.dataset == 'celeba':
        args.num_steps = 75000
        args.logit_save_steps = 100
        args.save_logit_after = 55000
        args.stop_save_logit_after = 60000

    if args.dataset == 'cifar10':
        args.num_steps = 50000
        args.logit_save_steps = 100
        args.save_logit_after = 35000
        args.stop_save_logit_after = 40000

    print(args)

    if args.ckpt_step:
        netG_ckpt_file = save_path / f'checkpoints/netG/netG_{args.ckpt_step}_steps.pth'
        netD_ckpt_file = save_path / f'checkpoints/netD/netD_{args.ckpt_step}_steps.pth'
    else:
        netG_ckpt_file = None
        netD_ckpt_file = None

    # Start training
    trainer = LogTrainer(
        output_path=save_path,
        logit_save_steps=args.logit_save_steps,
        netG_ckpt_file=netG_ckpt_file,
        netD_ckpt_file=netD_ckpt_file,
        netD=netD,
        netG=netG,
        optD=optD,
        optG=optG,
        n_dis=args.n_dis,
        num_steps=args.num_steps,
        save_steps=1000,
        lr_decay=args.decay,
        dataloader=dl_train,
        log_dir=output_dir,
        print_steps=10,
        device=device,
        topk=args.topk,
        save_logits=not args.no_save_logits,
        save_logit_after=args.save_logit_after,
        stop_save_logit_after=args.stop_save_logit_after,
    )
    trainer.train()
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset", "-d", default="color_mnist", type=str)
    parser.add_argument("--root",
                        "-r",
                        default="./dataset/colour_mnist",
                        type=str,
                        help="dataset dir")
    parser.add_argument("--baseline_exp_path", default="color_mnist", type=str)
    parser.add_argument("--resample_exp_path", default="color_mnist", type=str)
    parser.add_argument('--p1_step', default=15000, type=int)
    parser.add_argument('--p2_step', default=20000, type=int)
    parser.add_argument('--resample_score', type=str)
    parser.add_argument("--use_loss", action='store_true')
    parser.add_argument('--seed', type=int, default=1)
    parser.add_argument('--major_ratio', default=0.99, type=float)
    parser.add_argument('--num_data', default=10000, type=int)
    parser.add_argument('--name', type=str)
    args = parser.parse_args()

    baseline_exp_path = Path(args.baseline_exp_path)
    resample_exp_path = Path(args.resample_exp_path)

    if args.use_loss:
        baseline_ae_loss = np.load(
            baseline_exp_path /
            f'cae_checkpoints/{args.p2_step}_steps_seed{args.seed}/cae_training_loss.npy'
        )
        resample_ae_loss = np.load(
            resample_exp_path /
            f'cae_checkpoints/{args.p2_step}_steps_seed{args.seed}/cae_training_loss.npy'
        )
        baseline_ae = baseline_ae_loss[:, -1]
        resample_ae = resample_ae_loss[:, -1]

    logits = pickle.load(open(baseline_exp_path / 'logits_netD_eval.pkl',
                              "rb"))
    score_start_step = args.p1_step - 5000
    score_end_step = args.p1_step
    score_dict = calculate_scores(logits,
                                  start_epoch=score_start_step,
                                  end_epoch=score_end_step)
    sample_weights = score_dict[args.resample_score]

    weight_sort_index = np.argsort(sample_weights)
    test_dict = dict()

    ds_train = get_predefined_dataset(dataset_name=args.dataset,
                                      root=args.root,
                                      weights=None,
                                      major_ratio=args.major_ratio,
                                      num_data=args.num_data)

    csv_file = f'./re_{args.dataset}_{args.name}.csv'
    if os.path.exists(csv_file):
        f = open(csv_file, 'a', newline='')
        wr = csv.writer(f)
    else:
        f = open(csv_file, 'w', newline='')
        wr = csv.writer(f)
        wr.writerow(
            ['Ratio', 'Seed', 'Type', 'Baseline', 'Resample', 'Difference(%)'])

    test_dict['all'] = weight_sort_index
    if args.dataset == 'color_mnist':
        test_dict['green'] = np.where(ds_train.dataset.biased_targets == 1)
    elif args.dataset == 'mnist_fmnist':
        test_dict['fmnist'] = np.where(ds_train.dataset.mixed_targets == 1)

    for idx_name, index in test_dict.items():
        baseline_mean = baseline_ae[index].mean()
        resample_mean = resample_ae[index].mean()
        baseline_resample_diff = (resample_mean -
                                  baseline_mean) / baseline_mean * 100
        print(
            f'{idx_name}, baseline_mean: {baseline_mean}, resample_mean: {resample_mean} diff: {baseline_resample_diff}%'
        )
        wr.writerow([
            args.major_ratio, args.seed, idx_name, baseline_mean,
            resample_mean, baseline_resample_diff
        ])

    f.close()