Beispiel #1
0
  def run(self, experiments, reflections):
    result = flex.reflection_table()

    for expt_id, experiment in enumerate(experiments):
      refls = reflections.select(reflections['id'] == expt_id)

      A = flex.mat3_double(len(refls), experiment.crystal.get_A())
      s0 = flex.vec3_double(len(refls), experiment.beam.get_s0())
      q = A * refls['miller_index'].as_vec3_double()
      rh = (q + s0).norms() - 1/experiment.beam.get_wavelength()
      eta = 2*math.pi/180 * experiment.crystal.get_half_mosaicity_deg()
      rs = (1/experiment.crystal.get_domain_size_ang()) + (eta/2/refls['d'])

      p_G = flex.exp(-2*ln2*rh**2/rs**2)

      dp_G_drs = p_G * 4 * ln2 * rh**2 / rs**2

      refls['rh'] = rh
      refls['rs'] = rs
      refls['p_G'] = p_G
      refls['dp_G_drs'] = dp_G_drs

      result.extend(refls)

    return experiments, result
Beispiel #2
0
    def jacobian_callable(self,values):
      PB = self.get_partiality_array(values)
      EXP = flex.exp(-2.*values.BFACTOR*self.DSSQ)
      G_terms = (EXP * PB * self.ICALCVEC)
      B_terms = (values.G * EXP * PB * self.ICALCVEC)*(-2.*self.DSSQ)
      P_terms = (values.G * EXP * self.ICALCVEC)

      thetax = values.thetax; thetay = values.thetay;
      Rx = matrix.col((1,0,0)).axis_and_angle_as_r3_rotation_matrix(thetax)
      dRx_dthetax = matrix.col((1,0,0)).axis_and_angle_as_r3_derivative_wrt_angle(thetax)
      Ry = matrix.col((0,1,0)).axis_and_angle_as_r3_rotation_matrix(thetay)
      dRy_dthetay = matrix.col((0,1,0)).axis_and_angle_as_r3_derivative_wrt_angle(thetay)
      ref_ori = matrix.sqr(self.ORI.reciprocal_matrix())
      miller_vec = self.MILLER.as_vec3_double()
      ds1_dthetax = flex.mat3_double(len(self.MILLER),Ry * dRx_dthetax * ref_ori) * miller_vec
      ds1_dthetay = flex.mat3_double(len(self.MILLER),dRy_dthetay * Rx * ref_ori) * miller_vec

      s1vec = self.get_s1_array(values)
      s1lenvec = flex.sqrt(s1vec.dot(s1vec))
      dRh_dthetax = s1vec.dot(ds1_dthetax)/s1lenvec
      dRh_dthetay = s1vec.dot(ds1_dthetay)/s1lenvec
      rs = values.RS
      Rh = self.get_Rh_array(values)
      rs_sq = rs*rs
      denomin = (2. * Rh * Rh + rs_sq)
      dPB_dRh = { "lorentzian": -PB * 4. * Rh / denomin,
                  "gaussian": -PB * 4. * math.log(2) * Rh / rs_sq }[self.profile_shape]
      dPB_dthetax = dPB_dRh * dRh_dthetax
      dPB_dthetay = dPB_dRh * dRh_dthetay
      Px_terms = P_terms * dPB_dthetax; Py_terms = P_terms * dPB_dthetay

      return [G_terms,B_terms,0,Px_terms,Py_terms]
 def calculate_scales(self, block_id=0):
     """Calculate and return inverse scales for a given block."""
     scales = flex.exp(
         flex.double(self._n_refl[block_id], self._parameters[0])
         / (2.0 * (self._d_values[block_id] * self._d_values[block_id]))
     )
     return scales
    def jacobian_callable(self,values):
      PB = self.get_partiality_array(values)
      EXP = flex.exp(-2.*values.BFACTOR*self.DSSQ)
      G_terms = (EXP * PB * self.ICALCVEC)
      B_terms = (values.G * EXP * PB * self.ICALCVEC)*(-2.*self.DSSQ)
      P_terms = (values.G * EXP * self.ICALCVEC)

      thetax = values.thetax; thetay = values.thetay;
      Rx = matrix.col((1,0,0)).axis_and_angle_as_r3_rotation_matrix(thetax)
      dRx_dthetax = matrix.col((1,0,0)).axis_and_angle_as_r3_derivative_wrt_angle(thetax)
      Ry = matrix.col((0,1,0)).axis_and_angle_as_r3_rotation_matrix(thetay)
      dRy_dthetay = matrix.col((0,1,0)).axis_and_angle_as_r3_derivative_wrt_angle(thetay)
      ref_ori = matrix.sqr(self.ORI.reciprocal_matrix())
      miller_vec = self.MILLER.as_vec3_double()
      ds1_dthetax = flex.mat3_double(len(self.MILLER),Ry * dRx_dthetax * ref_ori) * miller_vec
      ds1_dthetay = flex.mat3_double(len(self.MILLER),dRy_dthetay * Rx * ref_ori) * miller_vec

      s1vec = self.get_s1_array(values)
      s1lenvec = flex.sqrt(s1vec.dot(s1vec))
      dRh_dthetax = s1vec.dot(ds1_dthetax)/s1lenvec
      dRh_dthetay = s1vec.dot(ds1_dthetay)/s1lenvec
      rs = values.RS
      Rh = self.get_Rh_array(values)
      rs_sq = rs*rs
      denomin = (2. * Rh * Rh + rs_sq)
      dPB_dRh = -PB * 4. * Rh / denomin
      dPB_dthetax = dPB_dRh * dRh_dthetax
      dPB_dthetay = dPB_dRh * dRh_dthetay
      Px_terms = P_terms * dPB_dthetax; Py_terms = P_terms * dPB_dthetay

      dPB_drs = 4 * rs * Rh * Rh / (denomin * denomin)
      Prs_terms = P_terms * dPB_drs

      return [G_terms,B_terms,Prs_terms,Px_terms,Py_terms]
Beispiel #5
0
def show_image(c,b,s, BB=None, SS=None):

  import numpy.ma
  from dials.array_family import flex
  N = 100
  im = flex.double(flex.grid(N, N))
  mask = flex.bool(flex.grid(N, N))
  for j in range(N):
    for i in range(N):
      B = -1.0 + j * 10.0 / N
      S = -1.0 + i * 10.0 / N
      im[j,i], mask[j,i] = func(c,b,s,B,S)
      im[j,i] = -im[j,i]

  masked_im = numpy.ma.array(
    # im.as_numpy_array(),
    flex.exp(im).as_numpy_array(),
    mask = mask.as_numpy_array())
  mask2 = flex.bool(flex.grid(N, N))
  indices = []
  for i in range(len(mask)):
    if mask[i] == False:
      indices.append(i)
  indices = flex.size_t(indices)
  ind = flex.max_index(im.select(indices))
  ind = indices[ind]
  maxy = -1.0 + (ind % N) * 10.0 / N
  maxx = -1.0 + (ind // N) * 10.0 / N
  from matplotlib import pylab
  pylab.imshow(masked_im, origin='bottom', extent=[-1.0, 9.0, -1.0, 9.0])
  if YY is not None and XX is not None:
    pylab.plot(YY, XX)
  pylab.scatter([maxy], [maxx])
  pylab.show()
Beispiel #6
0
def plot_prob_for_zero(c, b, s):
  from math import log, exp, factorial
  from dials.array_family import flex
  L = flex.double(flex.grid(100, 100))
  MASK = flex.bool(flex.grid(100, 100))
  c = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
  b = [bb / sum(b) for bb in b]
  s = [ss / sum(s) for ss in s]
  for BB in range(0, 100):
    for SS in range(0, 100):
      B = 0 + BB / 10000.0
      S = 0 + SS / 40.0
      LL = 0
      for i in range(len(b)):
        if B*b[i] + S*s[i] <= 0:
          MASK[BB, SS] = True
          LL = -999999
          break
        else:
          LL += c[i]*log(B*b[i]+S*s[i]) - log(factorial(c[i])) - B*b[i] - S*s[i]

      L[BB, SS] = LL
  index = flex.max_index(L)
  i = index % 100
  j = index // 100
  B = 0 + j / 10000.0
  S = 0 + i / 40.0
  print flex.max(L), B, S
  from matplotlib import pylab
  import numpy
  im = numpy.ma.masked_array(flex.exp(L).as_numpy_array(), mask=MASK.as_numpy_array())
  pylab.imshow(im)
  pylab.show()
  exit(0)
Beispiel #7
0
    def abs_correction_flex(self, s1_flex):
        s1_flex_length = len(s1_flex)
        surface_normal = flex.vec3_double(s1_flex_length, self.surface_normal)
        edge_of_tape_normal = flex.vec3_double(s1_flex_length, self.edge_of_tape_normal)

        dsurf1 = flex.double(len(s1_flex), 0)
        dsurf2 = flex.double(len(s1_flex), 0)
        dot_product = s1_flex.dot(surface_normal)
        sel = dot_product != 0
        dsurf1.set_selected(sel, self.sn1 / dot_product.select(sel))
        dsurf2.set_selected(sel, self.sn2 / dot_product.select(sel))
        dsurf3 = self.sn3 / (s1_flex.dot(edge_of_tape_normal))

        # determine path length through kapton tape
        kapton_path_mm = flex.double(s1_flex_length, 0)
        unshadowed_sel = (dsurf3 < dsurf1) | (dsurf1 < 0)
        nearsel = ~unshadowed_sel & (dsurf3 < dsurf2)
        kapton_path_mm.set_selected(nearsel, (dsurf3 - dsurf1).select(nearsel))
        farsel = ~unshadowed_sel & (dsurf3 >= dsurf2)
        kapton_path_mm.set_selected(farsel, (dsurf2 - dsurf1).select(farsel))

        # determine absorption correction
        absorption_correction = 1 / flex.exp(
            -self.abs_coeff * kapton_path_mm
        )  # unitless, >=1
        return absorption_correction
 def fvec_callable(self, values):
     PB = self.get_partiality_array(values)
     EXP = flex.exp(-2. * values.BFACTOR * self.DSSQ)
     terms = (values.G * EXP * PB * self.ICALCVEC - self.IOBSVEC)
     # Ideas for improvement
     #   straightforward to also include sigma weighting
     #   add extra terms representing rotational excursion: terms.concatenate(1.e7*Rh)
     return terms
 def fvec_callable(self, values):
   PB = self.get_partiality_array(values)
   EXP = flex.exp(-2.*values.BFACTOR*self.DSSQ)
   terms = (values.G * EXP * PB * self.ICALCVEC - self.IOBSVEC)
   # Ideas for improvement
   #   straightforward to also include sigma weighting
   #   add extra terms representing rotational excursion: terms.concatenate(1.e7*Rh)
   return terms
Beispiel #10
0
 def calculate_scales_and_derivatives(self, block_id=0):
     """Calculate and return inverse scales and derivatives for a given block."""
     scales = flex.exp(self._parameters[0] * self._x[block_id] /
                       (self._d_values[block_id]**2))
     derivatives = sparse.matrix(self._n_refl[block_id], 1)
     for i in range(self._n_refl[block_id]):
         derivatives[i, 0] = scales[i] * (self._x[block_id][i] /
                                          (self._d_values[block_id][i]**2))
     return scales, derivatives
 def calculate_scales_and_derivatives(self, block_id=0):
     scales, derivatives = super(
         SmoothBScaleComponent1D, self
     ).calculate_scales_and_derivatives(block_id)
     if self._n_refl[block_id] == 0:
         return flex.double([]), sparse.matrix(0, 0)
     prefac = 1.0 / (2.0 * (self._d_values[block_id] * self._d_values[block_id]))
     s = flex.exp(scales * prefac)
     d = row_multiply(derivatives, s * prefac)
     return s, d
 def calculate_scales_and_derivatives(self, block_id=0):
     """Calculate and return inverse scales and derivatives for a given block."""
     d_squared = self._d_values[block_id] * self._d_values[block_id]
     scales = flex.exp(
         flex.double(self._n_refl[block_id], self._parameters[0]) / (2.0 * d_squared)
     )
     derivatives = sparse.matrix(self._n_refl[block_id], 1)
     for i in range(self._n_refl[block_id]):
         derivatives[i, 0] = scales[i] / (2.0 * d_squared[i])
     return scales, derivatives
Beispiel #13
0
    def abs_correction_flex(self, s1_flex):
        """ Compute the absorption correction using beers law. Takes in a flex array of s1 vectors, determines path lengths for each
            and then determines absorption correction for each s1 vector """
        kapton_faces = self.faces
        from dials.algorithms.integration import get_kapton_path_cpp

        # new style, much faster
        kapton_path_mm = get_kapton_path_cpp(kapton_faces, s1_flex)
        # old style, really slow
        # for s1 in s1_flex:
        #  kapton_path_mm.append(self.get_kapton_path_mm(s1))
        # determine absorption correction
        if kapton_path_mm is not None:
            absorption_correction = 1 / flex.exp(
                -self.abs_coeff * kapton_path_mm)  # unitless, >=1
        return absorption_correction
Beispiel #14
0
            def target(self, log_parameters):
                """
                Compute the negative log likelihood

                """
                from dials.array_family import flex

                parameters = flex.exp(log_parameters)

                self.logL = self.func.log_likelihood(parameters)
                logL = flex.sum(self.logL)

                self.count += 1

                print(self.count, list(parameters), logL)

                self.history.append(parameters, logL)

                # Return negative log likelihood
                return -logL
Beispiel #15
0
def plot_prob_for_zero(c, b, s):
    from math import log, exp, factorial
    from dials.array_family import flex

    L = flex.double(flex.grid(100, 100))
    MASK = flex.bool(flex.grid(100, 100))
    c = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
    b = [bb / sum(b) for bb in b]
    s = [ss / sum(s) for ss in s]
    for BB in range(0, 100):
        for SS in range(0, 100):
            B = 0 + BB / 10000.0
            S = 0 + SS / 40.0
            LL = 0
            for i in range(len(b)):
                if B * b[i] + S * s[i] <= 0:
                    MASK[BB, SS] = True
                    LL = -999999
                    break
                else:
                    LL += (
                        c[i] * log(B * b[i] + S * s[i])
                        - log(factorial(c[i]))
                        - B * b[i]
                        - S * s[i]
                    )

            L[BB, SS] = LL
    index = flex.max_index(L)
    i = index % 100
    j = index // 100
    B = 0 + j / 10000.0
    S = 0 + i / 40.0
    print(flex.max(L), B, S)
    from matplotlib import pylab
    import numpy

    im = numpy.ma.masked_array(flex.exp(L).as_numpy_array(), mask=MASK.as_numpy_array())
    pylab.imshow(im)
    pylab.show()
    exit(0)
Beispiel #16
0
def show_image(c, b, s, BB=None, SS=None):

    import numpy.ma
    from dials.array_family import flex

    N = 100
    im = flex.double(flex.grid(N, N))
    mask = flex.bool(flex.grid(N, N))
    for j in range(N):
        for i in range(N):
            B = -1.0 + j * 10.0 / N
            S = -1.0 + i * 10.0 / N
            im[j, i], mask[j, i] = func(c, b, s, B, S)
            im[j, i] = -im[j, i]

    masked_im = numpy.ma.array(
        # im.as_numpy_array(),
        flex.exp(im).as_numpy_array(),
        mask=mask.as_numpy_array(),
    )
    mask2 = flex.bool(flex.grid(N, N))
    indices = []
    for i in range(len(mask)):
        if mask[i] == False:
            indices.append(i)
    indices = flex.size_t(indices)
    ind = flex.max_index(im.select(indices))
    ind = indices[ind]
    maxy = -1.0 + (ind % N) * 10.0 / N
    maxx = -1.0 + (ind // N) * 10.0 / N
    from matplotlib import pylab

    pylab.imshow(masked_im, origin="bottom", extent=[-1.0, 9.0, -1.0, 9.0])
    if YY is not None and XX is not None:
        pylab.plot(YY, XX)
    pylab.scatter([maxy], [maxx])
    pylab.show()
Beispiel #17
0
 def calculate_scales(self, block_id=0):
     """Calculate and return inverse scales for a given block."""
     scales = flex.exp(self._parameters[0] * self._x[block_id] /
                       (self._d_values[block_id]**2))
     return scales
 def scaler_callable(self, values):
     PB = self.get_partiality_array(values)
     EXP = flex.exp(-2. * values.BFACTOR * self.DSSQ)
     terms = values.G * EXP * PB
     return terms
 def get_gaussian_partiality_array(self, values):
     rs = values.RS
     Rh = self.get_Rh_array(values)
     immersion = Rh / rs
     gaussian = flex.exp(-2. * math.log(2) * (immersion * immersion))
     return gaussian
 def calculate_scales(self, block_id=0):
     s = super(SmoothBScaleComponent1D, self).calculate_scales(block_id)
     return flex.exp(s / (2.0 * flex.pow2(self._d_values[block_id])))
Beispiel #21
0
  def compute_intensity_parameters(self):
    """ Create a new reflection table with all the derived parameters needed
    to apply corrections from RS postrefinement """
    refls = self.scaler.ISIGI
    ct = self.scaler.crystal_table

    rx = flex.mat3_double() # crystal rotation around x
    ry = flex.mat3_double() # crystal rotation around y
    u = flex.mat3_double()  # U matrix (orientation)
    b = flex.mat3_double()  # B matrix (cell parameters)
    wavelength = flex.double()
    G = flex.double()       # scaling gfactor
    B = flex.double()       # wilson B factor
    s0 = flex.vec3_double() # beam vector
    deff = flex.double()    # effective domain size
    eta = flex.double()     # effective mosaic domain misorientation angle

    ex = col((1,0,0))       # crystal rotation x axis
    ey = col((0,1,0))       # crystal rotation y axis

    for i in xrange(len(ct)):
      # Need to copy crystal specific terms for each reflection. Equivalent to a JOIN in SQL.
      n_refl = ct['n_refl'][i]
      rx.extend(flex.mat3_double(n_refl, ex.axis_and_angle_as_r3_rotation_matrix(ct['thetax'][i])))
      ry.extend(flex.mat3_double(n_refl, ey.axis_and_angle_as_r3_rotation_matrix(ct['thetay'][i])))
      u.extend(flex.mat3_double(n_refl, ct['u_matrix'][i]))
      b.extend(flex.mat3_double(n_refl, ct['b_matrix'][i]))
      wavelength.extend(flex.double(n_refl, ct['wavelength'][i]))
      G.extend(flex.double(n_refl, ct['G'][i]))
      B.extend(flex.double(n_refl, ct['B'][i]))
      s0.extend(flex.vec3_double(n_refl, (0,0,-1)) * (1/ct['wavelength'][i]))
      deff.extend(flex.double(n_refl, ct['deff'][i]))
      eta.extend(flex.double(n_refl, ct['eta'][i]))

    iobs       = refls['iobs']
    h          = refls['miller_index_original'].as_vec3_double()
    q          = ry * rx * u * b * h                  # vector pointing from origin of reciprocal space to RLP
    qlen       = q.norms()                            # length of q
    d          = 1/q.norms()                          # resolution
    #rs         = (1/deff)+(eta/(2*d))                # proper formulation of RS
    rs         = 1/deff                               # assumes eta is zero
    rs_sq      = rs*rs                                # square of rs
    s          = (s0+q)                               # vector from center of Ewald sphere to RLP
    slen       = s.norms()                            # length of s
    rh         = slen-(1/wavelength)                  # distance from RLP to Ewald sphere
    p_n        = rs_sq                                # numerator of partiality lorenzian expression
    p_d        = (2. * (rh * rh)) + rs_sq             # denominator of partiality lorenzian expression
    partiality = p_n/p_d
    theta      = flex.asin(wavelength/(2*d))
    epsilon    = -8*B*(flex.sin(theta)/wavelength)**2 # exponential term in partiality
    eepsilon   = flex.exp(epsilon)                    # e^epsilon
    D          = partiality * G * eepsilon            # denominator of partiality lorenzian expression
    thetah     = flex.asin(wavelength/(2*d))          # reflecting angle
    sinthetah  = flex.sin(thetah)
    er         = sinthetah/wavelength                 # ratio term in epsilon

    # save all the columns
    r = flex.reflection_table()
    r['rx']         = rx
    r['ry']         = ry
    r['u']          = u
    r['b']          = b
    r['h']          = h
    r['q']          = q
    r['qlen']       = qlen
    r['D']          = D
    r['rs']         = rs
    r['eta']        = eta
    r['deff']       = deff
    r['d']          = d
    r['s']          = s
    r['slen']       = slen
    r['wavelength'] = wavelength
    r['p_n']        = p_n
    r['p_d']        = p_d
    r['partiality'] = partiality
    r['G']          = G
    r['B']          = B
    r['eepsilon']   = eepsilon
    r['thetah']     = thetah
    r['sinthetah']  = sinthetah
    r['er']         = er

    return r
Beispiel #22
0
def paper_test(B, S):

  from numpy.random import poisson
  from math import exp

  background_shape = [1 for i in range(20)]
  signal_shape = [1 if i >= 6 and i < 15 else 0 for i in range(20)]

  background = [poisson(bb * B,1)[0] for bb in background_shape]
  signal = [poisson(ss * S, 1)[0] for ss in signal_shape]
  # background = [bb * B for bb in background_shape]
  # signal = [ss * S for ss in signal_shape]
  total = [b + s for b, s in zip(background, signal)]

  # from matplotlib import pylab
  # pylab.plot(total)
  # pylab.plot(signal)
  # pylab.plot(background)
  # pylab.show()

  total = [0, 1, 0, 0, 0, 0, 3, 1, 3, 3, 6, 6, 4, 1, 4, 0, 2, 0, 1, 1]
  total = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

  # plot_prob_for_zero(total, background_shape, signal_shape)
  # signal_shape = [exp(-(x - 10.0)**2 / (2*3.0**2)) for x in range(20)]
  # signal_shape = [ss / sum(signal_shape) for ss in signal_shape]
  # print signal_shape
  #plot_valid(background_shape, signal_shape)

  B = 155.0 / 296.0
  from dials.array_family import flex
  from math import log, factorial
  V = flex.double(flex.grid(100, 100))
  L = flex.double(flex.grid(100, 100))
  DB = flex.double(flex.grid(100, 100))
  DS = flex.double(flex.grid(100, 100))
  P = flex.double(flex.grid(100, 100))
  Fb = sum(background_shape)
  Fs = sum(signal_shape)
  SV = []
  MASK = flex.bool(flex.grid(100, 100), False)
  for BB in range(100):
    for SS in range(100):
      B = -5.0 + (BB) / 10.0
      S = -5.0 + (SS) / 10.0
      # SV.append(S)
      VV = 0
      LL = 0
      DDB = 0
      DDS = 0
      for i in range(20):
        s = signal_shape[i]
        b = background_shape[i]
        c = total[i]
        if B*b + S*s <= 0:
          # MASK[BB, SS] = True
          LL = 0
          if b == 0:
            DDB += 0
          else:
            DDB += 1e7
          if s == 0:
            DDS += 0
          else:
            DDS += 1e7
          # break
        else:
        # VV += (b + s)*c / (B*b + S*s)
        # LL += c*log(B*b+S*s) - log(factorial(c)) - B*b - S*s
          DDB += c*b/(B*b+S*s) - b
          DDS += c*s/(B*b+S*s) - s
      VV -= (Fb + Fs)
      # print B, S, VV
      # V[BB, SS] = abs(VV)
      L[BB, SS] = LL
      DB[BB,SS] = DDB
      DS[BB,SS] = DDS

  max_ind = flex.max_index(L)
  j = max_ind // 100
  i = max_ind % 100
  print "Approx: ", (j+1) / 20.0, (i+1) / 20.0
  print "Min/Max DB: ", flex.min(DB), flex.max(DB)
  print "Min/Max DS: ", flex.min(DS), flex.max(DS)
  from matplotlib import pylab
  # pylab.imshow(flex.log(V).as_numpy_array(), extent=[0.05, 5.05, 5.05, 0.05])
  # pylab.plot(SV, V)
  # pylab.plot(SV, [0] * 100)
  # pylab.show()
  im = flex.exp(L).as_numpy_array()
  import numpy
  # im = numpy.ma.masked_array(im, mask=MASK.as_numpy_array())
  # pylab.imshow(im)#, extent=[-5.0, 5.0, 5.0, -5.0], origin='lower')
  pylab.imshow(DB.as_numpy_array(), vmin=-100, vmax=100)#, extent=[-5.0, 5.0, 5.0, -5.0], origin='lower')
  pylab.contour(DB.as_numpy_array(), levels=[0], colors=['red'])
  pylab.contour(DS.as_numpy_array(), levels=[0], colors=['black'])
  pylab.show()
  # im = numpy.ma.masked_array(DB.as_numpy_array(), mask=MASK.as_numpy_array())
  # pylab.imshow(im, extent=[-5.0, 5.0, 5.0, -5.0], vmin=-20, vmax=100)
  # pylab.show()
  # im = numpy.ma.masked_array(DS.as_numpy_array(), mask=MASK.as_numpy_array())
  # pylab.imshow(im, extent=[-5.0, 5.0, 5.0, -5.0], vmin=-20, vmax=100)
  # pylab.show()
  # exit(0)

  S1, B1 = value(total, background_shape, signal_shape)
  exit(0)
  try:
    S1, B1 = value(total, background_shape, signal_shape)
    print "Result:"
    print S1, B1
    exit(0)
  except Exception, e:
    raise e
    import sys
    import traceback
    traceback.print_exc()
    from dials.array_family import flex
    Fs = sum(signal_shape)
    Fb = sum(background_shape)
    Rs = flex.double(flex.grid(100, 100))
    print "-----"
    print B, S
    # from matplotlib import pylab
    # pylab.plot(total)
    # pylab.show()
    print background_shape
    print signal_shape
    print total
    from math import exp, factorial, log
    minx = -1
    miny = -1
    minr = 9999
    for BB in range(0, 100):
      for SS in range(0, 100):
        B = -10 + (BB) / 5.0
        S = -10 + (SS) / 5.0
        L = 0
        Fb2 = 0
        Fs2 = 0
        for i in range(len(total)):
          c = total[i]
          b = background_shape[i]
          s = signal_shape[i]
          # P = exp(-(B*b + S*s)) * (B*b+S*s)**c / factorial(c)
          # print P
          # if P > 0:
          #   L += log(P)
          den = B*b + S*s
          num1 = b*c
          num2 = s*c
          if den != 0:
            Fb2 += num1 / den
            Fs2 += num2 / den
        R = (Fb2 - Fb)**2 + (Fs2 - Fs)**2
        if R > 1000:
          R = 0
        # Rs[BB,SS] = L#R#Fs2 - Fs
        Rs[BB,SS] = R#Fs2 - Fs
    from matplotlib import pylab
    pylab.imshow(flex.log(Rs).as_numpy_array(), extent=[-5,5,5,-5])
    pylab.show()
    exit(0)
Beispiel #23
0
def paper_test(B, S):

    from numpy.random import poisson
    from math import exp

    background_shape = [1 for i in range(20)]
    signal_shape = [1 if i >= 6 and i < 15 else 0 for i in range(20)]

    background = [poisson(bb * B, 1)[0] for bb in background_shape]
    signal = [poisson(ss * S, 1)[0] for ss in signal_shape]
    # background = [bb * B for bb in background_shape]
    # signal = [ss * S for ss in signal_shape]
    total = [b + s for b, s in zip(background, signal)]

    # from matplotlib import pylab
    # pylab.plot(total)
    # pylab.plot(signal)
    # pylab.plot(background)
    # pylab.show()

    total = [0, 1, 0, 0, 0, 0, 3, 1, 3, 3, 6, 6, 4, 1, 4, 0, 2, 0, 1, 1]
    total = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

    # plot_prob_for_zero(total, background_shape, signal_shape)
    # signal_shape = [exp(-(x - 10.0)**2 / (2*3.0**2)) for x in range(20)]
    # signal_shape = [ss / sum(signal_shape) for ss in signal_shape]
    # print signal_shape
    # plot_valid(background_shape, signal_shape)

    B = 155.0 / 296.0
    from dials.array_family import flex
    from math import log, factorial

    V = flex.double(flex.grid(100, 100))
    L = flex.double(flex.grid(100, 100))
    DB = flex.double(flex.grid(100, 100))
    DS = flex.double(flex.grid(100, 100))
    P = flex.double(flex.grid(100, 100))
    Fb = sum(background_shape)
    Fs = sum(signal_shape)
    SV = []
    MASK = flex.bool(flex.grid(100, 100), False)
    for BB in range(100):
        for SS in range(100):
            B = -5.0 + (BB) / 10.0
            S = -5.0 + (SS) / 10.0
            # SV.append(S)
            VV = 0
            LL = 0
            DDB = 0
            DDS = 0
            for i in range(20):
                s = signal_shape[i]
                b = background_shape[i]
                c = total[i]
                if B * b + S * s <= 0:
                    # MASK[BB, SS] = True
                    LL = 0
                    if b == 0:
                        DDB += 0
                    else:
                        DDB += 1e7
                    if s == 0:
                        DDS += 0
                    else:
                        DDS += 1e7
                    # break
                else:
                    # VV += (b + s)*c / (B*b + S*s)
                    # LL += c*log(B*b+S*s) - log(factorial(c)) - B*b - S*s
                    DDB += c * b / (B * b + S * s) - b
                    DDS += c * s / (B * b + S * s) - s
            VV -= Fb + Fs
            # print B, S, VV
            # V[BB, SS] = abs(VV)
            L[BB, SS] = LL
            DB[BB, SS] = DDB
            DS[BB, SS] = DDS

    max_ind = flex.max_index(L)
    j = max_ind // 100
    i = max_ind % 100
    print("Approx: ", (j + 1) / 20.0, (i + 1) / 20.0)
    print("Min/Max DB: ", flex.min(DB), flex.max(DB))
    print("Min/Max DS: ", flex.min(DS), flex.max(DS))
    from matplotlib import pylab

    # pylab.imshow(flex.log(V).as_numpy_array(), extent=[0.05, 5.05, 5.05, 0.05])
    # pylab.plot(SV, V)
    # pylab.plot(SV, [0] * 100)
    # pylab.show()
    im = flex.exp(L).as_numpy_array()
    import numpy

    # im = numpy.ma.masked_array(im, mask=MASK.as_numpy_array())
    # pylab.imshow(im)#, extent=[-5.0, 5.0, 5.0, -5.0], origin='lower')
    pylab.imshow(
        DB.as_numpy_array(), vmin=-100, vmax=100
    )  # , extent=[-5.0, 5.0, 5.0, -5.0], origin='lower')
    pylab.contour(DB.as_numpy_array(), levels=[0], colors=["red"])
    pylab.contour(DS.as_numpy_array(), levels=[0], colors=["black"])
    pylab.show()
    # im = numpy.ma.masked_array(DB.as_numpy_array(), mask=MASK.as_numpy_array())
    # pylab.imshow(im, extent=[-5.0, 5.0, 5.0, -5.0], vmin=-20, vmax=100)
    # pylab.show()
    # im = numpy.ma.masked_array(DS.as_numpy_array(), mask=MASK.as_numpy_array())
    # pylab.imshow(im, extent=[-5.0, 5.0, 5.0, -5.0], vmin=-20, vmax=100)
    # pylab.show()
    # exit(0)

    S1, B1 = value(total, background_shape, signal_shape)
    exit(0)
    try:
        S1, B1 = value(total, background_shape, signal_shape)
        print("Result:")
        print(S1, B1)
        exit(0)
    except Exception as e:
        raise e
        import sys
        import traceback

        traceback.print_exc()
        from dials.array_family import flex

        Fs = sum(signal_shape)
        Fb = sum(background_shape)
        Rs = flex.double(flex.grid(100, 100))
        print("-----")
        print(B, S)
        # from matplotlib import pylab
        # pylab.plot(total)
        # pylab.show()
        print(background_shape)
        print(signal_shape)
        print(total)
        from math import exp, factorial, log

        minx = -1
        miny = -1
        minr = 9999
        for BB in range(0, 100):
            for SS in range(0, 100):
                B = -10 + (BB) / 5.0
                S = -10 + (SS) / 5.0
                L = 0
                Fb2 = 0
                Fs2 = 0
                for i in range(len(total)):
                    c = total[i]
                    b = background_shape[i]
                    s = signal_shape[i]
                    # P = exp(-(B*b + S*s)) * (B*b+S*s)**c / factorial(c)
                    # print P
                    # if P > 0:
                    #   L += log(P)
                    den = B * b + S * s
                    num1 = b * c
                    num2 = s * c
                    if den != 0:
                        Fb2 += num1 / den
                        Fs2 += num2 / den
                R = (Fb2 - Fb) ** 2 + (Fs2 - Fs) ** 2
                if R > 1000:
                    R = 0
                # Rs[BB,SS] = L#R#Fs2 - Fs
                Rs[BB, SS] = R  # Fs2 - Fs
        from matplotlib import pylab

        pylab.imshow(flex.log(Rs).as_numpy_array(), extent=[-5, 5, 5, -5])
        pylab.show()
        exit(0)
    exit(0)

    # print S, B, sum(signal), sum(background), S1, B1
    return S, B, sum(signal), sum(background), S1, B1
 def scaler_callable(self, values):
   PB = self.get_partiality_array(values)
   EXP = flex.exp(-2.*values.BFACTOR*self.DSSQ)
   terms = values.G * EXP * PB
   return terms
Beispiel #25
0
def test_RefinerCalculator(small_reflection_table):
    """Test for the RefinerCalculator class. This calculates scale factors and
    derivatives for reflections based on the model components."""

    # To test the basis function, need a scaling active parameter manager - to set
    # this up we need a components dictionary with some reflection data.

    # Let's use KB model components for simplicity - and have an extra fake 'abs'
    # component.
    rt = small_reflection_table
    components = {
        "scale": SingleScaleFactor(flex.double([1.0])),
        "decay": SingleBScaleFactor(flex.double([0.0])),
        "abs": SingleScaleFactor(flex.double([1.0])),
    }  # Create empty components.
    components["scale"].data = {"id": rt["id"]}
    components["decay"].data = {"d": rt["d"]}
    components["abs"].data = {"id": rt["id"]}
    for component in components.values():
        component.update_reflection_data()  # Add some data to components.

    apm = scaling_active_parameter_manager(components, ["decay", "scale"])

    # First test that scale factors can be successfully updated.
    # Manually change the parameters in the apm.
    decay = components["decay"]  # Define alias
    _ = components["scale"]  # Define alias
    # Note, order of params in apm.x depends on order in scaling model components.
    new_B = 1.0
    new_S = 2.0
    apm.set_param_vals(flex.double([new_S, new_B]))
    s, d = RefinerCalculator.calculate_scales_and_derivatives(apm, 0)
    slist, dlist = RefinerCalculator._calc_component_scales_derivatives(apm, 0)
    # Now test that the inverse scale factor is correctly calculated.
    calculated_sfs = s
    assert list(calculated_sfs) == pytest.approx(
        list(new_S * flex.exp(new_B / (2.0 * flex.pow2(decay.d_values[0])))))

    # Now check that the derivative matrix is correctly calculated.
    calc_derivs = d
    assert calc_derivs[0, 0] == dlist[0][0, 0] * slist[1][0]
    assert calc_derivs[1, 0] == dlist[0][1, 0] * slist[1][1]
    assert calc_derivs[2, 0] == dlist[0][2, 0] * slist[1][2]
    assert calc_derivs[0, 1] == dlist[1][0, 0] * slist[0][0]
    assert calc_derivs[1, 1] == dlist[1][1, 0] * slist[0][1]
    assert calc_derivs[2, 1] == dlist[1][2, 0] * slist[0][2]

    # Repeat the test when there is only one active parameter.
    # First reset the parameters
    components["decay"].parameters = flex.double([0.0])
    components["scale"].parameters = flex.double([1.0])
    components["abs"].parameters = flex.double([1.0])
    components["decay"].calculate_scales_and_derivatives()
    components["scale"].calculate_scales_and_derivatives()
    components["abs"].calculate_scales_and_derivatives()

    # Now generate a parameter manager for a single component.
    apm = scaling_active_parameter_manager(components, ["scale"])
    new_S = 2.0
    apm.set_param_vals(flex.double(components["scale"].n_params, new_S))
    s, d = RefinerCalculator.calculate_scales_and_derivatives(apm, 0)
    slist, dlist = RefinerCalculator._calc_component_scales_derivatives(apm, 0)
    # Test that the scales and derivatives were correctly calculated
    assert list(s) == list([new_S] * slist[0].size())
    assert d[0, 0] == dlist[0][0, 0]
    assert d[1, 0] == dlist[0][1, 0]
    assert d[2, 0] == dlist[0][2, 0]

    # Test again for two components.
    components["decay"].parameters = flex.double([0.0])
    components["scale"].parameters = flex.double([1.0])
    components["abs"].parameters = flex.double([1.0])
    components["decay"].calculate_scales_and_derivatives()
    components["scale"].calculate_scales_and_derivatives()
    components["abs"].calculate_scales_and_derivatives()

    apm = scaling_active_parameter_manager(components, ["scale", "decay"])
    _, __ = RefinerCalculator.calculate_scales_and_derivatives(apm, 0)

    # Test for no components
    apm = scaling_active_parameter_manager(components, [])
    _, d = RefinerCalculator.calculate_scales_and_derivatives(apm, 0)
    assert d.n_cols == 0 and d.n_rows == 0
Beispiel #26
0
def glm2(y):
    from math import sqrt, exp, floor, log
    from scipy.stats import poisson
    from scitbx import matrix
    from dials.array_family import flex

    y = flex.double(y)

    x = flex.double([1.0 for yy in y])
    w = flex.double([1.0 for yy in y])

    X = matrix.rec(x, (len(x), 1))

    c = 1.345

    beta = matrix.col([0])

    maxiter = 10
    accuracy = 1e-3

    for iter in range(maxiter):

        ni = flex.double([1.0 for xx in x])
        sni = flex.sqrt(ni)

        eta = flex.double(X * beta)

        mu = flex.exp(eta)
        dmu_deta = flex.exp(eta)

        Vmu = mu
        sVF = flex.sqrt(Vmu)
        residP = (y - mu) * sni / sVF

        phi = 1
        sV = sVF * sqrt(phi)
        residPS = residP / sqrt(phi)

        H = flex.floor(mu * ni - c * sni * sV)
        K = flex.floor(mu * ni + c * sni * sV)
        # print min(H)
        dpH = flex.double([poisson(mui).pmf(Hi) for mui, Hi in zip(mu, H)])
        dpH1 = flex.double([poisson(mui).pmf(Hi - 1) for mui, Hi in zip(mu, H)])
        dpK = flex.double([poisson(mui).pmf(Ki) for mui, Ki in zip(mu, K)])
        dpK1 = flex.double([poisson(mui).pmf(Ki - 1) for mui, Ki in zip(mu, K)])
        pHm1 = flex.double([poisson(mui).cdf(Hi - 1) for mui, Hi in zip(mu, H)])
        pKm1 = flex.double([poisson(mui).cdf(Ki - 1) for mui, Ki in zip(mu, K)])
        pH = pHm1 + dpH  # = ppois(H,*)
        pK = pKm1 + dpK  # = ppois(K,*)
        E2f = mu * (dpH1 - dpH - dpK1 + dpK) + pKm1 - pHm1
        Epsi = c * (1.0 - pK - pH) + (mu / sV) * (dpH - dpK)
        Epsi2 = c * c * (pH + 1.0 - pK) + E2f
        EpsiS = c * (dpH + dpK) + E2f / sV

        psi = flex.double([huber(rr, c) for rr in residPS])
        cpsi = psi - Epsi
        temp = cpsi * w * sni / sV * dmu_deta
        EEqMat = [0] * len(X)
        for j in range(X.n_rows()):
            for i in range(X.n_columns()):
                k = i + j * X.n_columns()
                EEqMat[k] = X[k] * temp[j]
        EEqMat = matrix.rec(EEqMat, (X.n_rows(), X.n_columns()))
        EEq = []
        for i in range(EEqMat.n_columns()):
            col = []
            for j in range(EEqMat.n_rows()):
                k = i + j * EEqMat.n_columns()
                col.append(EEqMat[k])
            EEq.append(sum(col) / len(col))
        EEq = matrix.col(EEq)
        DiagB = EpsiS / (sni * sV) * w * (ni * dmu_deta) ** 2
        B = matrix.diag(DiagB)
        H = (X.transpose() * B * X) / len(y)

        dbeta = H.inverse() * EEq
        beta_new = beta + dbeta

        relE = sqrt(sum([d * d for d in dbeta]) / max(1e-10, sum([d * d for d in beta])))
        beta = beta_new

        # print relE
        if relE < accuracy:
            break

    weights = [min(1, c / abs(r)) for r in residPS]

    eta = flex.double(X * beta)

    mu = flex.exp(eta)
    return beta
Beispiel #27
0
    def estimate(self, num_reflections):
        """
        Estimate the model parameters

        """
        from scitbx import simplex
        from copy import deepcopy
        from dials.array_family import flex
        from random import uniform

        # Select the reflections
        reflections = self._select_reflections(self.reflections,
                                               num_reflections)

        # The number of parameters
        num_parameters = len(self.history.names)

        # Setup the starting simplex
        if self.simplex is None:
            self.simplex = []
            for i in range(num_parameters + 1):
                self.simplex.append(
                    flex.log(
                        flex.double([
                            uniform(0.0001, 0.01)
                            for j in range(num_parameters)
                        ])))

        class Evaluator(object):
            """
            Evaluator to simplex

            """
            def __init__(
                self,
                history,
                experiment,
                reflections,
                num_integral,
                use_mosaic_block_angular_spread,
                use_wavelength_spread,
            ):
                """
                Initialise

                """
                from dials_scratch.jmp.profile_modelling import MLTarget3D

                self.func = MLTarget3D(
                    experiment,
                    reflections,
                    num_integral=num_integral,
                    use_mosaic_block_angular_spread=
                    use_mosaic_block_angular_spread,
                    use_wavelength_spread=use_wavelength_spread,
                )
                self.count = 1
                self.history = history
                self.logL = None

            def target(self, log_parameters):
                """
                Compute the negative log likelihood

                """
                from dials.array_family import flex

                parameters = flex.exp(log_parameters)

                self.logL = self.func.log_likelihood(parameters)
                logL = flex.sum(self.logL)

                self.count += 1

                print(self.count, list(parameters), logL)

                self.history.append(parameters, logL)

                # Return negative log likelihood
                return -logL

        # Setup the simplex optimizer
        optimizer = simplex.simplex_opt(
            num_parameters,
            matrix=self.simplex,
            evaluator=Evaluator(
                self.history,
                self.experiments[0],
                reflections,
                num_integral=self.num_integral,
                use_mosaic_block_angular_spread=self.
                use_mosaic_block_angular_spread,
                use_wavelength_spread=self.use_wavelength_spread,
            ),
            tolerance=1e-7,
        )

        # Get the solution
        self.parameters = flex.exp(optimizer.get_solution())

        # Get the final simplex
        self.simplex = optimizer.matrix

        # Save the likelihood for each reflection
        self.log_likelihood = optimizer.evaluator.logL
 def calculate_scales(self, block_id=0):
     s = super().calculate_scales(block_id)
     return flex.exp(s / (2.0 * flex.pow2(self._d_values[block_id])))
Beispiel #29
0
def glm2(y):
    from math import sqrt, exp, floor, log
    from scipy.stats import poisson
    from scitbx import matrix
    from dials.array_family import flex

    y = flex.double(y)

    x = flex.double([1.0 for yy in y])
    w = flex.double([1.0 for yy in y])

    X = matrix.rec(x, (len(x), 1))

    c = 1.345

    beta = matrix.col([0])

    maxiter = 10
    accuracy = 1e-3

    for iter in range(maxiter):

        ni = flex.double([1.0 for xx in x])
        sni = flex.sqrt(ni)

        eta = flex.double(X * beta)

        mu = flex.exp(eta)
        dmu_deta = flex.exp(eta)

        Vmu = mu
        sVF = flex.sqrt(Vmu)
        residP = (y - mu) * sni / sVF

        phi = 1
        sV = sVF * sqrt(phi)
        residPS = residP / sqrt(phi)

        H = flex.floor(mu * ni - c * sni * sV)
        K = flex.floor(mu * ni + c * sni * sV)
        # print min(H)
        dpH = flex.double([poisson(mui).pmf(Hi) for mui, Hi in zip(mu, H)])
        dpH1 = flex.double(
            [poisson(mui).pmf(Hi - 1) for mui, Hi in zip(mu, H)])
        dpK = flex.double([poisson(mui).pmf(Ki) for mui, Ki in zip(mu, K)])
        dpK1 = flex.double(
            [poisson(mui).pmf(Ki - 1) for mui, Ki in zip(mu, K)])
        pHm1 = flex.double(
            [poisson(mui).cdf(Hi - 1) for mui, Hi in zip(mu, H)])
        pKm1 = flex.double(
            [poisson(mui).cdf(Ki - 1) for mui, Ki in zip(mu, K)])
        pH = pHm1 + dpH  # = ppois(H,*)
        pK = pKm1 + dpK  # = ppois(K,*)
        E2f = mu * (dpH1 - dpH - dpK1 + dpK) + pKm1 - pHm1
        Epsi = c * (1.0 - pK - pH) + (mu / sV) * (dpH - dpK)
        Epsi2 = c * c * (pH + 1.0 - pK) + E2f
        EpsiS = c * (dpH + dpK) + E2f / sV

        psi = flex.double([huber(rr, c) for rr in residPS])
        cpsi = psi - Epsi
        temp = cpsi * w * sni / sV * dmu_deta
        EEqMat = [0] * len(X)
        for j in range(X.n_rows()):
            for i in range(X.n_columns()):
                k = i + j * X.n_columns()
                EEqMat[k] = X[k] * temp[j]
        EEqMat = matrix.rec(EEqMat, (X.n_rows(), X.n_columns()))
        EEq = []
        for i in range(EEqMat.n_columns()):
            col = []
            for j in range(EEqMat.n_rows()):
                k = i + j * EEqMat.n_columns()
                col.append(EEqMat[k])
            EEq.append(sum(col) / len(col))
        EEq = matrix.col(EEq)
        DiagB = EpsiS / (sni * sV) * w * (ni * dmu_deta)**2
        B = matrix.diag(DiagB)
        H = (X.transpose() * B * X) / len(y)

        dbeta = H.inverse() * EEq
        beta_new = beta + dbeta

        relE = sqrt(
            sum([d * d for d in dbeta]) / max(1e-10, sum([d * d
                                                          for d in beta])))
        beta = beta_new

        # print relE
        if relE < accuracy:
            break

    weights = [min(1, c / abs(r)) for r in residPS]

    eta = flex.double(X * beta)

    mu = flex.exp(eta)
    return beta