def __init__(self, constellation, differential, rotation):
        if constellation.arity() > 256:
            # If this becomes limiting some of the blocks should be generalised so
            # that they can work with shorts and ints as well as chars.
            raise ValueError("Constellation cannot contain more than 256 points.")

	gr.hier_block2.__init__(self, "mod_demod",
				gr.io_signature(1, 1, gr.sizeof_char),       # Input signature
				gr.io_signature(1, 1, gr.sizeof_char))       # Output signature

        arity = constellation.arity()

        # TX
        self.constellation = constellation
        self.differential = differential
        self.blocks = [self]
        # We expect a stream of unpacked bits.
        # First step is to pack them.
        self.blocks.append(gr.unpacked_to_packed_bb(1, gr.GR_MSB_FIRST))
        # Second step we unpack them such that we have k bits in each byte where
        # each constellation symbol hold k bits.
        self.blocks.append(
            gr.packed_to_unpacked_bb(self.constellation.bits_per_symbol(),
                                     gr.GR_MSB_FIRST))
        # Apply any pre-differential coding
        # Gray-coding is done here if we're also using differential coding.
        if self.constellation.apply_pre_diff_code():
            self.blocks.append(digital.map_bb(self.constellation.pre_diff_code()))
        # Differential encoding.
        if self.differential:
            self.blocks.append(digital.diff_encoder_bb(arity))
        # Convert to constellation symbols.
        self.blocks.append(digital.chunks_to_symbols_bc(self.constellation.points(),
                                                        self.constellation.dimensionality()))
        # CHANNEL
        # Channel just consists of a rotation to check differential coding.
        if rotation is not None:
            self.blocks.append(gr.multiply_const_cc(rotation))

        # RX
        # Convert the constellation symbols back to binary values.
        self.blocks.append(digital.constellation_decoder_cb(self.constellation.base()))
        # Differential decoding.
        if self.differential:
            self.blocks.append(digital.diff_decoder_bb(arity))
        # Decode any pre-differential coding.
        if self.constellation.apply_pre_diff_code():
            self.blocks.append(digital.map_bb(
                mod_codes.invert_code(self.constellation.pre_diff_code())))
        # unpack the k bit vector into a stream of bits            
        self.blocks.append(gr.unpack_k_bits_bb(
                self.constellation.bits_per_symbol()))
        # connect to block output
        check_index = len(self.blocks)
        self.blocks = self.blocks[:check_index]
        self.blocks.append(self)

        self.connect(*self.blocks)
Beispiel #2
0
    def test_bc_001(self):
        const = [1 + 0j, 0 + 1j, -1 + 0j, 0 - 1j]
        src_data = (0, 1, 2, 3, 3, 2, 1, 0)
        expected_result = (1 + 0j, 0 + 1j, -1 + 0j, 0 - 1j, 0 - 1j, -1 + 0j,
                           0 + 1j, 1 + 0j)

        src = blocks.vector_source_b(src_data)
        op = digital.chunks_to_symbols_bc(const)

        dst = blocks.vector_sink_c()
        self.tb.connect(src, op)
        self.tb.connect(op, dst)
        self.tb.run()

        actual_result = dst.data()
        self.assertEqual(expected_result, actual_result)
    def test_bc_001(self):
        const = [ 1+0j, 0+1j,
                 -1+0j, 0-1j]
        src_data = (0, 1, 2, 3, 3, 2, 1, 0)
        expected_result = (1+0j, 0+1j, -1+0j, 0-1j,
                           0-1j, -1+0j, 0+1j, 1+0j)

        src = gr.vector_source_b(src_data)
        op = digital.chunks_to_symbols_bc(const)

        dst = gr.vector_sink_c()
        self.tb.connect(src, op)
        self.tb.connect(op, dst)
        self.tb.run()

        actual_result = dst.data()
        self.assertEqual(expected_result, actual_result)
Beispiel #4
0
    def __init__(self,
                 constellation,
                 differential=_def_differential,
                 samples_per_symbol=_def_samples_per_symbol,
                 pre_diff_code=True,
                 excess_bw=_def_excess_bw,
                 verbose=_def_verbose,
                 log=_def_log):

        gr.hier_block2.__init__(
            self,
            "generic_mod",
            gr.io_signature(1, 1, gr.sizeof_char),  # Input signature
            gr.io_signature(1, 1, gr.sizeof_gr_complex))  # Output signature

        self._constellation = constellation
        self._samples_per_symbol = samples_per_symbol
        self._excess_bw = excess_bw
        self._differential = differential
        # Only apply a predifferential coding if the constellation also supports it.
        self.pre_diff_code = pre_diff_code and self._constellation.apply_pre_diff_code(
        )

        if self._samples_per_symbol < 2:
            raise TypeError, ("sbp must be >= 2, is %f" %
                              self._samples_per_symbol)

        arity = pow(2, self.bits_per_symbol())

        # turn bytes into k-bit vectors
        self.bytes2chunks = \
            blocks.packed_to_unpacked_bb(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        if self.pre_diff_code:
            self.symbol_mapper = digital.map_bb(
                self._constellation.pre_diff_code())

        if differential:
            self.diffenc = digital.diff_encoder_bb(arity)

        self.chunks2symbols = digital.chunks_to_symbols_bc(
            self._constellation.points())

        # pulse shaping filter
        nfilts = 32
        ntaps = nfilts * 11 * int(
            self._samples_per_symbol)  # make nfilts filters of ntaps each
        self.rrc_taps = filter.firdes.root_raised_cosine(
            nfilts,  # gain
            nfilts,  # sampling rate based on 32 filters in resampler
            1.0,  # symbol rate
            self._excess_bw,  # excess bandwidth (roll-off factor)
            ntaps)
        self.rrc_filter = filter.pfb_arb_resampler_ccf(
            self._samples_per_symbol, self.rrc_taps)

        # Connect
        self._blocks = [self, self.bytes2chunks]
        if self.pre_diff_code:
            self._blocks.append(self.symbol_mapper)
        if differential:
            self._blocks.append(self.diffenc)
        self._blocks += [self.chunks2symbols, self.rrc_filter, self]
        self.connect(*self._blocks)

        if verbose:
            self._print_verbage()

        if log:
            self._setup_logging()
Beispiel #5
0
 def __init__(self,
              fft_len=_def_fft_len,
              cp_len=_def_cp_len,
              packet_length_tag_key=_def_packet_length_tag_key,
              occupied_carriers=_def_occupied_carriers,
              pilot_carriers=_def_pilot_carriers,
              pilot_symbols=_def_pilot_symbols,
              bps_header=1,
              bps_payload=1,
              sync_word1=None,
              sync_word2=None,
              rolloff=0,
              debug_log=False,
              scramble_bits=False):
     gr.hier_block2.__init__(self, "ofdm_tx",
                             gr.io_signature(1, 1, gr.sizeof_char),
                             gr.io_signature(1, 1, gr.sizeof_gr_complex))
     ### Param init / sanity check ########################################
     self.fft_len = fft_len
     self.cp_len = cp_len
     self.packet_length_tag_key = packet_length_tag_key
     self.occupied_carriers = occupied_carriers
     self.pilot_carriers = pilot_carriers
     self.pilot_symbols = pilot_symbols
     self.bps_header = bps_header
     self.bps_payload = bps_payload
     self.sync_word1 = sync_word1
     if sync_word1 is None:
         self.sync_word1 = _make_sync_word1(fft_len, occupied_carriers,
                                            pilot_carriers)
     else:
         if len(sync_word1) != self.fft_len:
             raise ValueError(
                 "Length of sync sequence(s) must be FFT length.")
     self.sync_words = [
         self.sync_word1,
     ]
     if sync_word2 is None:
         self.sync_word2 = _make_sync_word2(fft_len, occupied_carriers,
                                            pilot_carriers)
     else:
         self.sync_word2 = sync_word2
     if len(self.sync_word2):
         if len(self.sync_word2) != fft_len:
             raise ValueError(
                 "Length of sync sequence(s) must be FFT length.")
         self.sync_word2 = list(self.sync_word2)
         self.sync_words.append(self.sync_word2)
     if scramble_bits:
         self.scramble_seed = 0x7f
     else:
         self.scramble_seed = 0x00  # We deactivate the scrambler by init'ing it with zeros
     ### Header modulation ################################################
     crc = digital.crc32_bb(False, self.packet_length_tag_key)
     header_constellation = _get_constellation(bps_header)
     header_mod = digital.chunks_to_symbols_bc(
         header_constellation.points())
     formatter_object = digital.packet_header_ofdm(
         occupied_carriers=occupied_carriers,
         n_syms=1,
         bits_per_header_sym=self.bps_header,
         bits_per_payload_sym=self.bps_payload,
         scramble_header=scramble_bits)
     header_gen = digital.packet_headergenerator_bb(
         formatter_object.base(), self.packet_length_tag_key)
     header_payload_mux = blocks.tagged_stream_mux(
         itemsize=gr.sizeof_gr_complex * 1,
         lengthtagname=self.packet_length_tag_key,
         tag_preserve_head_pos=
         1  # Head tags on the payload stream stay on the head
     )
     self.connect(self, crc, header_gen, header_mod,
                  (header_payload_mux, 0))
     if debug_log:
         self.connect(header_gen, blocks.file_sink(1, 'tx-hdr.dat'))
     ### Payload modulation ###############################################
     payload_constellation = _get_constellation(bps_payload)
     payload_mod = digital.chunks_to_symbols_bc(
         payload_constellation.points())
     payload_scrambler = digital.additive_scrambler_bb(
         0x8a,
         self.scramble_seed,
         7,
         0,  # Don't reset after fixed length (let the reset tag do that)
         bits_per_byte=8,  # This is before unpacking
         reset_tag_key=self.packet_length_tag_key)
     payload_unpack = blocks.repack_bits_bb(
         8,  # Unpack 8 bits per byte
         bps_payload,
         self.packet_length_tag_key)
     self.connect(crc, payload_scrambler, payload_unpack, payload_mod,
                  (header_payload_mux, 1))
     ### Create OFDM frame ################################################
     allocator = digital.ofdm_carrier_allocator_cvc(
         self.fft_len,
         occupied_carriers=self.occupied_carriers,
         pilot_carriers=self.pilot_carriers,
         pilot_symbols=self.pilot_symbols,
         sync_words=self.sync_words,
         len_tag_key=self.packet_length_tag_key)
     ffter = fft.fft_vcc(
         self.fft_len,
         False,  # Inverse FFT
         (),  # No window
         True  # Shift
     )
     cyclic_prefixer = digital.ofdm_cyclic_prefixer(
         self.fft_len, self.fft_len + self.cp_len, rolloff,
         self.packet_length_tag_key)
     self.connect(header_payload_mux, allocator, ffter, cyclic_prefixer,
                  self)
     if debug_log:
         self.connect(
             allocator,
             blocks.file_sink(gr.sizeof_gr_complex * fft_len,
                              'tx-post-allocator.dat'))
         self.connect(
             cyclic_prefixer,
             blocks.file_sink(gr.sizeof_gr_complex, 'tx-signal.dat'))
Beispiel #6
0
 def __init__(self, fft_len=_def_fft_len, cp_len=_def_cp_len,
              packet_length_tag_key=_def_packet_length_tag_key,
              occupied_carriers=_def_occupied_carriers,
              pilot_carriers=_def_pilot_carriers,
              pilot_symbols=_def_pilot_symbols,
              bps_header=1,
              bps_payload=1,
              sync_word1=None,
              sync_word2=None,
              rolloff=0,
              debug_log=False,
              scramble_bits=False
              ):
     gr.hier_block2.__init__(self, "ofdm_tx",
                 gr.io_signature(1, 1, gr.sizeof_char),
                 gr.io_signature(1, 1, gr.sizeof_gr_complex))
     ### Param init / sanity check ########################################
     self.fft_len           = fft_len
     self.cp_len            = cp_len
     self.packet_length_tag_key = packet_length_tag_key
     self.occupied_carriers = occupied_carriers
     self.pilot_carriers    = pilot_carriers
     self.pilot_symbols     = pilot_symbols
     self.bps_header        = bps_header
     self.bps_payload       = bps_payload
     self.sync_word1 = sync_word1
     if sync_word1 is None:
         self.sync_word1 = _make_sync_word1(fft_len, occupied_carriers, pilot_carriers)
     else:
         if len(sync_word1) != self.fft_len:
             raise ValueError("Length of sync sequence(s) must be FFT length.")
     self.sync_words = [self.sync_word1,]
     if sync_word2 is None:
         self.sync_word2 = _make_sync_word2(fft_len, occupied_carriers, pilot_carriers)
     else:
         self.sync_word2 = sync_word2
     if len(self.sync_word2):
         if len(self.sync_word2) != fft_len:
             raise ValueError("Length of sync sequence(s) must be FFT length.")
         self.sync_word2 = list(self.sync_word2)
         self.sync_words.append(self.sync_word2)
     if scramble_bits:
         self.scramble_seed = 0x7f
     else:
         self.scramble_seed = 0x00 # We deactivate the scrambler by init'ing it with zeros
     ### Header modulation ################################################
     crc = digital.crc32_bb(False, self.packet_length_tag_key)
     header_constellation  = _get_constellation(bps_header)
     header_mod = digital.chunks_to_symbols_bc(header_constellation.points())
     formatter_object = digital.packet_header_ofdm(
         occupied_carriers=occupied_carriers, n_syms=1,
         bits_per_header_sym=self.bps_header,
         bits_per_payload_sym=self.bps_payload,
         scramble_header=scramble_bits
     )
     header_gen = digital.packet_headergenerator_bb(formatter_object.base(), self.packet_length_tag_key)
     header_payload_mux = blocks.tagged_stream_mux(
             itemsize=gr.sizeof_gr_complex*1,
             lengthtagname=self.packet_length_tag_key,
             tag_preserve_head_pos=1 # Head tags on the payload stream stay on the head
     )
     self.connect(
             self,
             crc,
             header_gen,
             header_mod,
             (header_payload_mux, 0)
     )
     if debug_log:
         self.connect(header_gen, blocks.file_sink(1, 'tx-hdr.dat'))
     ### Payload modulation ###############################################
     payload_constellation = _get_constellation(bps_payload)
     payload_mod = digital.chunks_to_symbols_bc(payload_constellation.points())
     payload_scrambler = digital.additive_scrambler_bb(
         0x8a,
         self.scramble_seed,
         7,
         0, # Don't reset after fixed length (let the reset tag do that)
         bits_per_byte=8, # This is before unpacking
         reset_tag_key=self.packet_length_tag_key
     )
     payload_unpack = blocks.repack_bits_bb(
         8, # Unpack 8 bits per byte
         bps_payload,
         self.packet_length_tag_key
     )
     self.connect(
         crc,
         payload_scrambler,
         payload_unpack,
         payload_mod,
         (header_payload_mux, 1)
     )
     ### Create OFDM frame ################################################
     allocator = digital.ofdm_carrier_allocator_cvc(
         self.fft_len,
         occupied_carriers=self.occupied_carriers,
         pilot_carriers=self.pilot_carriers,
         pilot_symbols=self.pilot_symbols,
         sync_words=self.sync_words,
         len_tag_key=self.packet_length_tag_key
     )
     ffter = fft.fft_vcc(
             self.fft_len,
             False, # Inverse FFT
             (), # No window
             True # Shift
     )
     cyclic_prefixer = digital.ofdm_cyclic_prefixer(
         self.fft_len,
         self.fft_len+self.cp_len,
         rolloff,
         self.packet_length_tag_key
     )
     self.connect(header_payload_mux, allocator, ffter, cyclic_prefixer, self)
     if debug_log:
         self.connect(allocator,       blocks.file_sink(gr.sizeof_gr_complex * fft_len, 'tx-post-allocator.dat'))
         self.connect(cyclic_prefixer, blocks.file_sink(gr.sizeof_gr_complex,           'tx-signal.dat'))
    def __init__(self, constellation,
                 differential=_def_differential,
                 samples_per_symbol=_def_samples_per_symbol,
                 pre_diff_code=True,
                 excess_bw=_def_excess_bw,
                 verbose=_def_verbose,
                 log=_def_log):

	gr.hier_block2.__init__(self, "generic_mod",
				gr.io_signature(1, 1, gr.sizeof_char),       # Input signature
				gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature

        self._constellation = constellation
        self._samples_per_symbol = samples_per_symbol
        self._excess_bw = excess_bw
        self._differential = differential
        # Only apply a predifferential coding if the constellation also supports it.
        self.pre_diff_code = pre_diff_code and self._constellation.apply_pre_diff_code()

        if self._samples_per_symbol < 2:
            raise TypeError, ("sbp must be >= 2, is %f" % self._samples_per_symbol)
        
        arity = pow(2,self.bits_per_symbol())
        
        # turn bytes into k-bit vectors
        self.bytes2chunks = \
            blocks.packed_to_unpacked_bb(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        if self.pre_diff_code:
            self.symbol_mapper = digital.map_bb(self._constellation.pre_diff_code())

        if differential:
            self.diffenc = digital.diff_encoder_bb(arity)

        self.chunks2symbols = digital.chunks_to_symbols_bc(self._constellation.points())

        # pulse shaping filter
        nfilts = 32
        ntaps = nfilts * 11 * int(self._samples_per_symbol)    # make nfilts filters of ntaps each
        self.rrc_taps = filter.firdes.root_raised_cosine(
            nfilts,          # gain
            nfilts,          # sampling rate based on 32 filters in resampler
            1.0,             # symbol rate
            self._excess_bw, # excess bandwidth (roll-off factor)
            ntaps)
        self.rrc_filter = filter.pfb_arb_resampler_ccf(self._samples_per_symbol,
                                                       self.rrc_taps)

	# Connect
        self._blocks = [self, self.bytes2chunks]
        if self.pre_diff_code:
            self._blocks.append(self.symbol_mapper)
        if differential:
            self._blocks.append(self.diffenc)
        self._blocks += [self.chunks2symbols, self.rrc_filter, self]
        self.connect(*self._blocks)

        if verbose:
            self._print_verbage()
            
        if log:
            self._setup_logging()
Beispiel #8
0
    def __init__(self, constellation, differential, rotation):
        if constellation.arity() > 256:
            # If this becomes limiting some of the blocks should be generalised so
            # that they can work with shorts and ints as well as chars.
            raise ValueError(
                "Constellation cannot contain more than 256 points.")

        gr.hier_block2.__init__(
            self,
            "mod_demod",
            gr.io_signature(1, 1, gr.sizeof_char),  # Input signature
            gr.io_signature(1, 1, gr.sizeof_char))  # Output signature

        arity = constellation.arity()

        # TX
        self.constellation = constellation
        self.differential = differential
        self.blocks = [self]
        # We expect a stream of unpacked bits.
        # First step is to pack them.
        self.blocks.append(blocks.unpacked_to_packed_bb(1, gr.GR_MSB_FIRST))
        # Second step we unpack them such that we have k bits in each byte where
        # each constellation symbol hold k bits.
        self.blocks.append(
            blocks.packed_to_unpacked_bb(self.constellation.bits_per_symbol(),
                                         gr.GR_MSB_FIRST))
        # Apply any pre-differential coding
        # Gray-coding is done here if we're also using differential coding.
        if self.constellation.apply_pre_diff_code():
            self.blocks.append(
                digital.map_bb(self.constellation.pre_diff_code()))
        # Differential encoding.
        if self.differential:
            self.blocks.append(digital.diff_encoder_bb(arity))
        # Convert to constellation symbols.
        self.blocks.append(
            digital.chunks_to_symbols_bc(self.constellation.points(),
                                         self.constellation.dimensionality()))
        # CHANNEL
        # Channel just consists of a rotation to check differential coding.
        if rotation is not None:
            self.blocks.append(blocks.multiply_const_cc(rotation))

        # RX
        # Convert the constellation symbols back to binary values.
        self.blocks.append(
            digital.constellation_decoder_cb(self.constellation.base()))
        # Differential decoding.
        if self.differential:
            self.blocks.append(digital.diff_decoder_bb(arity))
        # Decode any pre-differential coding.
        if self.constellation.apply_pre_diff_code():
            self.blocks.append(
                digital.map_bb(
                    mod_codes.invert_code(self.constellation.pre_diff_code())))
        # unpack the k bit vector into a stream of bits
        self.blocks.append(
            blocks.unpack_k_bits_bb(self.constellation.bits_per_symbol()))
        # connect to block output
        check_index = len(self.blocks)
        self.blocks = self.blocks[:check_index]
        self.blocks.append(self)

        self.connect(*self.blocks)
Beispiel #9
0
 def __init__(self,
              fft_len=_def_fft_len,
              cp_len=_def_cp_len,
              packet_length_tag_key=_def_packet_length_tag_key,
              occupied_carriers=_def_occupied_carriers,
              pilot_carriers=_def_pilot_carriers,
              pilot_symbols=_def_pilot_symbols,
              bps_header=1,
              bps_payload=1,
              sync_word1=None,
              sync_word2=None,
              rolloff=0,
              debug_log=False):
     gr.hier_block2.__init__(self, "ofdm_tx",
                             gr.io_signature(1, 1, gr.sizeof_char),
                             gr.io_signature(1, 1, gr.sizeof_gr_complex))
     ### Param init / sanity check ########################################
     self.fft_len = fft_len
     self.cp_len = cp_len
     self.packet_length_tag_key = packet_length_tag_key
     self.occupied_carriers = occupied_carriers
     self.pilot_carriers = pilot_carriers
     self.pilot_symbols = pilot_symbols
     self.bps_header = bps_header
     self.bps_payload = bps_payload
     n_sync_words = 1
     self.sync_word1 = sync_word1
     if sync_word1 is None:
         self.sync_word1 = _make_sync_word1(fft_len, occupied_carriers,
                                            pilot_carriers)
     else:
         if len(sync_word1) != self.fft_len:
             raise ValueError(
                 "Length of sync sequence(s) must be FFT length.")
     self.sync_words = [
         self.sync_word1,
     ]
     self.sync_word2 = ()
     if sync_word2 is None:
         self.sync_word2 = _make_sync_word2(fft_len, occupied_carriers,
                                            pilot_carriers)
     if len(self.sync_word2):
         if len(self.sync_word2) != fft_len:
             raise ValueError(
                 "Length of sync sequence(s) must be FFT length.")
         self.sync_word2 = list(self.sync_word2)
         n_sync_words = 2
         self.sync_words.append(self.sync_word2)
     ### Header modulation ################################################
     crc = digital.crc32_bb(False, self.packet_length_tag_key)
     header_constellation = _get_constellation(bps_header)
     header_mod = digital.chunks_to_symbols_bc(
         header_constellation.points())
     formatter_object = digital.packet_header_ofdm(
         occupied_carriers=occupied_carriers,
         n_syms=1,
         bits_per_header_sym=self.bps_header,
         bits_per_payload_sym=self.bps_payload)
     header_gen = digital.packet_headergenerator_bb(
         formatter_object.base(), self.packet_length_tag_key)
     header_payload_mux = blocks.tagged_stream_mux(
         gr.sizeof_gr_complex * 1, self.packet_length_tag_key)
     self.connect(self, crc, header_gen, header_mod,
                  (header_payload_mux, 0))
     if debug_log:
         self.connect(header_gen, blocks.file_sink(1, 'tx-hdr.dat'))
     ### Payload modulation ###############################################
     payload_constellation = _get_constellation(bps_payload)
     payload_mod = digital.chunks_to_symbols_bc(
         payload_constellation.points())
     self.connect(
         crc,
         blocks.repack_bits_bb(
             8,  # Unpack 8 bits per byte
             bps_payload,
             self.packet_length_tag_key),
         payload_mod,
         (header_payload_mux, 1))
     ### Create OFDM frame ################################################
     allocator = digital.ofdm_carrier_allocator_cvc(
         self.fft_len,
         occupied_carriers=self.occupied_carriers,
         pilot_carriers=self.pilot_carriers,
         pilot_symbols=self.pilot_symbols,
         sync_words=self.sync_words,
         len_tag_key=self.packet_length_tag_key)
     ffter = fft.fft_vcc(
         self.fft_len,
         False,  # Inverse FFT
         (),  # No window
         True  # Shift
     )
     cyclic_prefixer = digital.ofdm_cyclic_prefixer(
         self.fft_len, self.fft_len + self.cp_len, rolloff,
         self.packet_length_tag_key)
     self.connect(header_payload_mux, allocator, ffter, cyclic_prefixer,
                  self)
     if debug_log:
         self.connect(allocator,
                      blocks.file_sink(8 * 64, 'tx-post-allocator.dat'))
         self.connect(cyclic_prefixer, blocks.file_sink(8, 'tx-signal.dat'))
    def __init__(self, constellation,
                 samples_per_symbol=_def_samples_per_symbol,
                 differential=_def_differential,
                 excess_bw=_def_excess_bw,
                 gray_coded=True,
                 verbose=_def_verbose,
                 log=_def_log):
        """
	Hierarchical block for RRC-filtered differential generic modulation.

	The input is a byte stream (unsigned char) and the
	output is the complex modulated signal at baseband.
        
	@param constellation: determines the modulation type
	@type constellation: gnuradio.digital.gr_constellation
	@param samples_per_symbol: samples per baud >= 2
	@type samples_per_symbol: float
	@param excess_bw: Root-raised cosine filter excess bandwidth
	@type excess_bw: float
        @param gray_coded: turn gray coding on/off
        @type gray_coded: bool
        @param verbose: Print information about modulator?
        @type verbose: bool
        @param log: Log modulation data to files?
        @type log: bool
	"""

	gr.hier_block2.__init__(self, "generic_mod",
				gr.io_signature(1, 1, gr.sizeof_char),       # Input signature
				gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature

        self._constellation = constellation.base()
        self._samples_per_symbol = samples_per_symbol
        self._excess_bw = excess_bw
        self._differential = differential

        if self._samples_per_symbol < 2:
            raise TypeError, ("sbp must be >= 2, is %f" % self._samples_per_symbol)
        
        arity = pow(2,self.bits_per_symbol())
        
        # turn bytes into k-bit vectors
        self.bytes2chunks = \
          gr.packed_to_unpacked_bb(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        if gray_coded == True:
            self.symbol_mapper = digital.map_bb(self._constellation.pre_diff_code())

        if differential:
            self.diffenc = digital.diff_encoder_bb(arity)

        self.chunks2symbols = digital.chunks_to_symbols_bc(self._constellation.points())

        # pulse shaping filter
        nfilts = 32
        ntaps = nfilts * 11 * int(self._samples_per_symbol)    # make nfilts filters of ntaps each
        self.rrc_taps = gr.firdes.root_raised_cosine(
            nfilts,          # gain
            nfilts,          # sampling rate based on 32 filters in resampler
            1.0,             # symbol rate
            self._excess_bw, # excess bandwidth (roll-off factor)
            ntaps)
        self.rrc_filter = gr.pfb_arb_resampler_ccf(self._samples_per_symbol,
                                                   self.rrc_taps)

	# Connect
        blocks = [self, self.bytes2chunks]
        if gray_coded == True:
            blocks.append(self.symbol_mapper)
        if differential:
            blocks.append(self.diffenc)
        blocks += [self.chunks2symbols, self.rrc_filter, self]
        self.connect(*blocks)

        if verbose:
            self._print_verbage()
            
        if log:
            self._setup_logging()
Beispiel #11
0
 def __init__(self, fft_len=_def_fft_len, cp_len=_def_cp_len,
              packet_length_tag_key=_def_packet_length_tag_key,
              occupied_carriers=_def_occupied_carriers,
              pilot_carriers=_def_pilot_carriers,
              pilot_symbols=_def_pilot_symbols,
              bps_header=1,
              bps_payload=1,
              sync_word1=None,
              sync_word2=None,
              rolloff=0,
              debug_log=False
              ):
     gr.hier_block2.__init__(self, "ofdm_tx",
                 gr.io_signature(1, 1, gr.sizeof_char),
                 gr.io_signature(1, 1, gr.sizeof_gr_complex))
     ### Param init / sanity check ########################################
     self.fft_len           = fft_len
     self.cp_len            = cp_len
     self.packet_length_tag_key = packet_length_tag_key
     self.occupied_carriers = occupied_carriers
     self.pilot_carriers    = pilot_carriers
     self.pilot_symbols     = pilot_symbols
     self.bps_header        = bps_header
     self.bps_payload       = bps_payload
     n_sync_words = 1
     self.sync_word1 = sync_word1
     if sync_word1 is None:
         self.sync_word1 = _make_sync_word1(fft_len, occupied_carriers, pilot_carriers)
     else:
         if len(sync_word1) != self.fft_len:
             raise ValueError("Length of sync sequence(s) must be FFT length.")
     self.sync_words = [self.sync_word1,]
     self.sync_word2 = ()
     if sync_word2 is None:
         self.sync_word2 = _make_sync_word2(fft_len, occupied_carriers, pilot_carriers)
     if len(self.sync_word2):
         if len(self.sync_word2) != fft_len:
             raise ValueError("Length of sync sequence(s) must be FFT length.")
         self.sync_word2 = list(self.sync_word2)
         n_sync_words = 2
         self.sync_words.append(self.sync_word2)
     ### Header modulation ################################################
     crc = digital.crc32_bb(False, self.packet_length_tag_key)
     header_constellation  = _get_constellation(bps_header)
     header_mod = digital.chunks_to_symbols_bc(header_constellation.points())
     formatter_object = digital.packet_header_ofdm(
         occupied_carriers=occupied_carriers, n_syms=1,
         bits_per_header_sym=self.bps_header,
         bits_per_payload_sym=self.bps_payload
     )
     header_gen = digital.packet_headergenerator_bb(formatter_object.base(), self.packet_length_tag_key)
     header_payload_mux = blocks.tagged_stream_mux(gr.sizeof_gr_complex*1, self.packet_length_tag_key)
     self.connect(self, crc, header_gen, header_mod, (header_payload_mux, 0))
     if debug_log:
         self.connect(header_gen, blocks.file_sink(1, 'tx-hdr.dat'))
     ### Payload modulation ###############################################
     payload_constellation = _get_constellation(bps_payload)
     payload_mod = digital.chunks_to_symbols_bc(payload_constellation.points())
     self.connect(
         crc,
         blocks.repack_bits_bb(
             8, # Unpack 8 bits per byte
             bps_payload,
             self.packet_length_tag_key
         ),
         payload_mod,
         (header_payload_mux, 1)
     )
     ### Create OFDM frame ################################################
     allocator = digital.ofdm_carrier_allocator_cvc(
         self.fft_len,
         occupied_carriers=self.occupied_carriers,
         pilot_carriers=self.pilot_carriers,
         pilot_symbols=self.pilot_symbols,
         sync_words=self.sync_words,
         len_tag_key=self.packet_length_tag_key
     )
     ffter = fft.fft_vcc(
             self.fft_len,
             False, # Inverse FFT
             (), # No window
             True # Shift
     )
     cyclic_prefixer = digital.ofdm_cyclic_prefixer(
         self.fft_len,
         self.fft_len+self.cp_len,
         rolloff,
         self.packet_length_tag_key
     )
     self.connect(header_payload_mux, allocator, ffter, cyclic_prefixer, self)
     if debug_log:
         self.connect(allocator,         blocks.file_sink(8*64, 'tx-post-allocator.dat'))
         self.connect(cyclic_prefixer,   blocks.file_sink(8,    'tx-signal.dat'))
Beispiel #12
0
 def __init__(self, fft_len=_def_fft_len, cp_len=_def_cp_len,
              frame_length_tag_key=_def_frame_length_tag_key,
              occupied_carriers=_def_occupied_carriers,
              pilot_carriers=_def_pilot_carriers,
              pilot_symbols=_def_pilot_symbols,
              bps_header=1,
              bps_payload=1,
              sync_word1=None,
              sync_word2=None,
              rolloff=0
              ):
     gr.hier_block2.__init__(self, "ofdm_tx",
                 gr.io_signature(1, 1, gr.sizeof_char),
                 gr.io_signature(1, 1, gr.sizeof_gr_complex))
     self.fft_len           = fft_len
     self.cp_len            = cp_len
     self.frame_length_tag_key    = frame_length_tag_key
     self.occupied_carriers = occupied_carriers
     self.pilot_carriers    = pilot_carriers
     self.pilot_symbols     = pilot_symbols
     self.bps_header        = bps_header
     self.bps_payload       = bps_payload
     n_sync_words = 1
     header_constellation  = _get_constellation(bps_header)
     header_mod = digital.chunks_to_symbols_bc(header_constellation.points())
     self.sync_word1 = sync_word1
     if sync_word1 is None:
         self.sync_word1 = _make_sync_word(fft_len, occupied_carriers, header_constellation)
     else:
         if len(sync_word1) != self.fft_len:
             raise ValueError("Length of sync sequence(s) must be FFT length.")
     total_sync_word = self.sync_word1
     self.sync_word2 = ()
     if sync_word2 is not None:
         if len(sync_word2) != fft_len:
             raise ValueError("Length of sync sequence(s) must be FFT length.")
         self.sync_word2 = sync_word2
         n_sync_words = 2
         total_sync_word = sync_word1 + sync_word2
     crc = digital.crc32_bb(False, self.frame_length_tag_key)
     formatter_object = digital.packet_header_ofdm(
         occupied_carriers, 1, "", "", "",
         bps_header
     )
     header_gen = digital.packet_headergenerator_bb(formatter_object.base())
     header_payload_mux = blocks.tagged_stream_mux(gr.sizeof_gr_complex*1, self.frame_length_tag_key)
     self.connect(self, crc, header_gen, header_mod, (header_payload_mux, 0))
     payload_constellation = _get_constellation(bps_payload)
     payload_mod = digital.chunks_to_symbols_bc(payload_constellation.points())
     self.connect(
         crc,
         blocks.repack_bits_bb(8, bps_payload, frame_length_tag_key),
         payload_mod,
         (header_payload_mux, 1)
     )
     self.connect(payload_mod, gr.tag_debug(gr.sizeof_gr_complex, "pmod"))
     sync_word_gen = gr.vector_source_c(
         total_sync_word, True, self.fft_len,
         tagged_streams.make_lengthtags((n_sync_words,), (0,), self.frame_length_tag_key)
     )
     allocator = digital.ofdm_carrier_allocator_cvc(
         self.fft_len,
         occupied_carriers=self.occupied_carriers,
         pilot_carriers=self.pilot_carriers,
         pilot_symbols=self.pilot_symbols,
         len_tag_key=self.frame_length_tag_key
     )
     syncword_data_mux  = blocks.tagged_stream_mux(gr.sizeof_gr_complex*self.fft_len, self.frame_length_tag_key)
     self.connect(sync_word_gen, (syncword_data_mux, 0))
     self.connect(header_payload_mux, allocator, (syncword_data_mux, 1))
     ffter = fft.fft_vcc(self.fft_len, False, (), False)
     cyclic_prefixer = digital.ofdm_cyclic_prefixer(
         self.fft_len,
         self.fft_len+self.cp_len,
         rolloff,
         self.frame_length_tag_key
     )
     self.connect(syncword_data_mux, ffter, cyclic_prefixer, self)
Beispiel #13
0
    def __init__(self,
                 constellation,
                 samples_per_symbol=_def_samples_per_symbol,
                 differential=_def_differential,
                 excess_bw=_def_excess_bw,
                 gray_coded=True,
                 verbose=_def_verbose,
                 log=_def_log):
        """
	Hierarchical block for RRC-filtered differential generic modulation.

	The input is a byte stream (unsigned char) and the
	output is the complex modulated signal at baseband.
        
	@param constellation: determines the modulation type
	@type constellation: gnuradio.digital.gr_constellation
	@param samples_per_symbol: samples per baud >= 2
	@type samples_per_symbol: float
	@param excess_bw: Root-raised cosine filter excess bandwidth
	@type excess_bw: float
        @param gray_coded: turn gray coding on/off
        @type gray_coded: bool
        @param verbose: Print information about modulator?
        @type verbose: bool
        @param log: Log modulation data to files?
        @type log: bool
	"""

        gr.hier_block2.__init__(
            self,
            "generic_mod",
            gr.io_signature(1, 1, gr.sizeof_char),  # Input signature
            gr.io_signature(1, 1, gr.sizeof_gr_complex))  # Output signature

        self._constellation = constellation.base()
        self._samples_per_symbol = samples_per_symbol
        self._excess_bw = excess_bw
        self._differential = differential

        if self._samples_per_symbol < 2:
            raise TypeError, ("sbp must be >= 2, is %f" %
                              self._samples_per_symbol)

        arity = pow(2, self.bits_per_symbol())

        # turn bytes into k-bit vectors
        self.bytes2chunks = \
          gr.packed_to_unpacked_bb(self.bits_per_symbol(), gr.GR_MSB_FIRST)

        if gray_coded == True:
            self.symbol_mapper = digital.map_bb(
                self._constellation.pre_diff_code())

        if differential:
            self.diffenc = digital.diff_encoder_bb(arity)

        self.chunks2symbols = digital.chunks_to_symbols_bc(
            self._constellation.points())

        # pulse shaping filter
        nfilts = 32
        ntaps = nfilts * 11 * int(
            self._samples_per_symbol)  # make nfilts filters of ntaps each
        self.rrc_taps = gr.firdes.root_raised_cosine(
            nfilts,  # gain
            nfilts,  # sampling rate based on 32 filters in resampler
            1.0,  # symbol rate
            self._excess_bw,  # excess bandwidth (roll-off factor)
            ntaps)
        self.rrc_filter = gr.pfb_arb_resampler_ccf(self._samples_per_symbol,
                                                   self.rrc_taps)

        # Connect
        blocks = [self, self.bytes2chunks]
        if gray_coded == True:
            blocks.append(self.symbol_mapper)
        if differential:
            blocks.append(self.diffenc)
        blocks += [self.chunks2symbols, self.rrc_filter, self]
        self.connect(*blocks)

        if verbose:
            self._print_verbage()

        if log:
            self._setup_logging()