Beispiel #1
0
def test_factor_terms():
    A = Symbol('A', commutative=False)
    assert factor_terms(9*(x + x*y + 1) + (3*x + 3)**(2 + 2*x)) == \
        9*x*y + 9*x + _keep_coeff(Integer(3), x + 1)**_keep_coeff(Integer(2), x + 1) + 9
    assert factor_terms(9*(x + x*y + 1) + (3)**(2 + 2*x)) == \
        _keep_coeff(Integer(9), 3**(2*x) + x*y + x + 1)
    assert factor_terms(3**(2 + 2*x) + a*3**(2 + 2*x)) == \
        9*3**(2*x)*(a + 1)
    assert factor_terms(x + x*A) == \
        x*(1 + A)
    assert factor_terms(sin(x + x*A)) == \
        sin(x*(1 + A))
    assert factor_terms((3*x + 3)**((2 + 2*x)/3)) == \
        _keep_coeff(Integer(3), x + 1)**_keep_coeff(Rational(2, 3), x + 1)
    assert factor_terms(x + (x*y + x)**(3*x + 3)) == \
        x + (x*(y + 1))**_keep_coeff(Integer(3), x + 1)
    assert factor_terms(a*(x + x*y) + b*(x*2 + y*x*2)) == \
        x*(a + 2*b)*(y + 1)
    i = Integral(x, (x, 0, oo))
    assert factor_terms(i) == i

    # check radical extraction
    eq = sqrt(2) + sqrt(10)
    assert factor_terms(eq) == eq
    assert factor_terms(eq, radical=True) == sqrt(2) * (1 + sqrt(5))
    eq = root(-6, 3) + root(6, 3)
    assert factor_terms(
        eq, radical=True) == 6**Rational(1, 3) * (1 + (-1)**Rational(1, 3))

    eq = [x + x * y]
    ans = [x * (y + 1)]
    for c in [list, tuple, set]:
        assert factor_terms(c(eq)) == c(ans)
    assert factor_terms(Tuple(x + x * y)) == Tuple(x * (y + 1))
    assert factor_terms(Interval(0, 1)) == Interval(0, 1)
    e = 1 / sqrt(a / 2 + 1)
    assert factor_terms(e, clear=False) == 1 / sqrt(a / 2 + 1)
    assert factor_terms(e, clear=True) == sqrt(2) / sqrt(a + 2)

    eq = x / (x + 1 / x) + 1 / (x**2 + 1)
    assert factor_terms(eq, fraction=False) == eq
    assert factor_terms(eq, fraction=True) == 1

    assert factor_terms((1/(x**3 + x**2) + 2/x**2)*y) == \
        y*(2 + 1/(x + 1))/x**2

    # if not True, then processesing for this in factor_terms is not necessary
    assert gcd_terms(-x - y) == -x - y
    assert factor_terms(-x - y) == Mul(-1, x + y, evaluate=False)

    # if not True, then "special" processesing in factor_terms is not necessary
    assert gcd_terms(exp(Mul(-1, x + 1))) == exp(-x - 1)
    e = exp(-x - 2) + x
    assert factor_terms(e) == exp(Mul(-1, x + 2, evaluate=False)) + x
    assert factor_terms(e, sign=False) == e
    assert factor_terms(exp(-4 * x - 2) -
                        x) == -x + exp(Mul(-2, 2 * x + 1, evaluate=False))
Beispiel #2
0
def test_factor_terms():
    A = Symbol('A', commutative=False)
    assert factor_terms(9*(x + x*y + 1) + (3*x + 3)**(2 + 2*x)) == \
        9*x*y + 9*x + _keep_coeff(Integer(3), x + 1)**_keep_coeff(Integer(2), x + 1) + 9
    assert factor_terms(9*(x + x*y + 1) + 3**(2 + 2*x)) == \
        _keep_coeff(Integer(9), 3**(2*x) + x*y + x + 1)
    assert factor_terms(3**(2 + 2*x) + a*3**(2 + 2*x)) == \
        9*3**(2*x)*(a + 1)
    assert factor_terms(x + x*A) == \
        x*(1 + A)
    assert factor_terms(sin(x + x*A)) == \
        sin(x*(1 + A))
    assert factor_terms((3*x + 3)**((2 + 2*x)/3)) == \
        _keep_coeff(Integer(3), x + 1)**_keep_coeff(Rational(2, 3), x + 1)
    assert factor_terms(x + (x*y + x)**(3*x + 3)) == \
        x + (x*(y + 1))**_keep_coeff(Integer(3), x + 1)
    assert factor_terms(a*(x + x*y) + b*(x*2 + y*x*2)) == \
        x*(a + 2*b)*(y + 1)
    i = Integral(x, (x, 0, oo))
    assert factor_terms(i) == i

    # check radical extraction
    eq = sqrt(2) + sqrt(10)
    assert factor_terms(eq) == eq
    assert factor_terms(eq, radical=True) == sqrt(2)*(1 + sqrt(5))
    eq = root(-6, 3) + root(6, 3)
    assert factor_terms(eq, radical=True) == cbrt(6)*(1 + cbrt(-1))

    eq = [x + x*y]
    ans = [x*(y + 1)]
    for c in [list, tuple, set]:
        assert factor_terms(c(eq)) == c(ans)
    assert factor_terms(Tuple(x + x*y)) == Tuple(x*(y + 1))
    assert factor_terms(Interval(0, 1)) == Interval(0, 1)
    e = 1/sqrt(a/2 + 1)
    assert factor_terms(e, clear=False) == 1/sqrt(a/2 + 1)
    assert factor_terms(e, clear=True) == sqrt(2)/sqrt(a + 2)

    eq = x/(x + 1/x) + 1/(x**2 + 1)
    assert factor_terms(eq, fraction=False) == eq
    assert factor_terms(eq, fraction=True) == 1

    assert factor_terms((1/(x**3 + x**2) + 2/x**2)*y) == \
        y*(2 + 1/(x + 1))/x**2

    # if not True, then processesing for this in factor_terms is not necessary
    assert gcd_terms(-x - y) == -x - y
    assert factor_terms(-x - y) == Mul(-1, x + y, evaluate=False)

    # if not True, then "special" processesing in factor_terms is not necessary
    assert gcd_terms(exp(Mul(-1, x + 1))) == exp(-x - 1)
    e = exp(-x - 2) + x
    assert factor_terms(e) == exp(Mul(-1, x + 2, evaluate=False)) + x
    assert factor_terms(e, sign=False) == e
    assert factor_terms(exp(-4*x - 2) - x) == -x + exp(Mul(-2, 2*x + 1, evaluate=False))
Beispiel #3
0
    def _together(expr):
        if isinstance(expr, Basic):
            if expr.is_Atom or (expr.is_Function and not deep):
                return expr
            elif expr.is_Add:
                return gcd_terms(list(map(_together, Add.make_args(expr))))
            elif expr.is_Pow:
                base = _together(expr.base)

                if deep:
                    exp = _together(expr.exp)
                else:
                    exp = expr.exp

                return expr.__class__(base, exp)
            else:
                return expr.__class__(*[_together(arg) for arg in expr.args])
        elif iterable(expr):
            return expr.__class__([_together(ex) for ex in expr])

        return expr
Beispiel #4
0
    def eval(cls, p, q):
        from diofant.core.add import Add
        from diofant.core.mul import Mul
        from diofant.core.singleton import S
        from diofant.core.exprtools import gcd_terms
        from diofant.polys.polytools import gcd

        def doit(p, q):
            """Try to return p % q if both are numbers or +/-p is known
            to be less than or equal q.
            """

            if p.is_infinite or q.is_infinite:
                return nan
            if (p == q or p == -q
                    or p.is_Pow and p.exp.is_Integer and p.base == q
                    or p.is_integer and q == 1):
                return S.Zero

            if q.is_Number:
                if p.is_Number:
                    return (p % q)
                if q == 2:
                    if p.is_even:
                        return S.Zero
                    elif p.is_odd:
                        return S.One

            # by ratio
            r = p / q
            try:
                d = int(r)
            except TypeError:
                pass
            else:
                rv = p - d * q
                if (rv * q).is_nonnegative:
                    return rv
                elif (rv * q).is_nonpositive:
                    return rv + q

            # by difference
            d = p - q
            if d.is_negative:
                if q.is_negative:
                    return d
                elif q.is_positive:
                    return p

        rv = doit(p, q)
        if rv is not None:
            return rv

        # denest
        if p.func is cls:
            # easy
            qinner = p.args[1]
            if qinner == q:
                return p
            # XXX other possibilities?

        # extract gcd; any further simplification should be done by the user
        G = gcd(p, q)
        if G != 1:
            p, q = [
                gcd_terms(i / G, clear=False, fraction=False) for i in (p, q)
            ]
        pwas, qwas = p, q

        # simplify terms
        # (x + y + 2) % x -> Mod(y + 2, x)
        if p.is_Add:
            args = []
            for i in p.args:
                a = cls(i, q)
                if a.count(cls) > i.count(cls):
                    args.append(i)
                else:
                    args.append(a)
            if args != list(p.args):
                p = Add(*args)

        else:
            # handle coefficients if they are not Rational
            # since those are not handled by factor_terms
            # e.g. Mod(.6*x, .3*y) -> 0.3*Mod(2*x, y)
            cp, p = p.as_coeff_Mul()
            cq, q = q.as_coeff_Mul()
            ok = False
            if not cp.is_Rational or not cq.is_Rational:
                r = cp % cq
                if r == 0:
                    G *= cq
                    p *= int(cp / cq)
                    ok = True
            if not ok:
                p = cp * p
                q = cq * q

        # simple -1 extraction
        if p.could_extract_minus_sign() and q.could_extract_minus_sign():
            G, p, q = [-i for i in (G, p, q)]

        # check again to see if p and q can now be handled as numbers
        rv = doit(p, q)
        if rv is not None:
            return rv * G

        # put 1.0 from G on inside
        if G.is_Float and G == 1:
            p *= G
            return cls(p, q, evaluate=False)
        elif G.is_Mul and G.args[0].is_Float and G.args[0] == 1:
            p = G.args[0] * p
            G = Mul._from_args(G.args[1:])
        return G * cls(p, q, evaluate=(p, q) != (pwas, qwas))
Beispiel #5
0
def test_gcd_terms():
    f = 2*(x + 1)*(x + 4)/(5*x**2 + 5) + (2*x + 2)*(x + 5)/(x**2 + 1)/5 + \
        (2*x + 2)*(x + 6)/(5*x**2 + 5)

    assert _gcd_terms(f) == (Rational(6, 5) * ((1 + x) / (1 + x**2)), 5 + x, 1)
    assert _gcd_terms(Add.make_args(f)) == \
        (Rational(6, 5)*((1 + x)/(1 + x**2)), 5 + x, 1)

    newf = Rational(6, 5) * ((1 + x) * (5 + x) / (1 + x**2))
    assert gcd_terms(f) == newf
    args = Add.make_args(f)
    # non-Basic sequences of terms treated as terms of Add
    assert gcd_terms(list(args)) == newf
    assert gcd_terms(tuple(args)) == newf
    assert gcd_terms(set(args)) == newf
    # but a Basic sequence is treated as a container
    assert gcd_terms(Tuple(*args)) != newf
    assert gcd_terms(Basic(Tuple(1, 3*y + 3*x*y), Tuple(1, 3))) == \
        Basic((1, 3*y*(x + 1)), (1, 3))
    # but we shouldn't change keys of a dictionary or some may be lost
    assert gcd_terms(Dict((x*(1 + y), 2), (x + x*y, y + x*y))) == \
        Dict({x*(y + 1): 2, x + x*y: y*(1 + x)})

    assert gcd_terms((2 * x + 2)**3 +
                     (2 * x + 2)**2) == 4 * (x + 1)**2 * (2 * x + 3)

    assert gcd_terms(0) == 0
    assert gcd_terms(1) == 1
    assert gcd_terms(x) == x
    assert gcd_terms(2 + 2 * x) == Mul(2, 1 + x, evaluate=False)
    arg = x * (2 * x + 4 * y)
    garg = 2 * x * (x + 2 * y)
    assert gcd_terms(arg) == garg
    assert gcd_terms(sin(arg)) == sin(garg)

    # issue sympy/sympy#6139-like
    alpha, alpha1, alpha2, alpha3 = symbols('alpha:4')
    a = alpha**2 - alpha * x**2 + alpha + x**3 - x * (alpha + 1)
    rep = {
        alpha: (1 + sqrt(5)) / 2 + alpha1 * x + alpha2 * x**2 + alpha3 * x**3
    }
    s = (a / (x - alpha)).subs(rep).series(x, 0, 1)
    assert simplify(collect(s, x)) == -sqrt(5) / 2 - Rational(3, 2) + O(x)

    # issue sympy/sympy#5917
    assert _gcd_terms([Integer(0), Integer(0)]) == (0, 0, 1)
    assert _gcd_terms([2 * x + 4]) == (2, x + 2, 1)

    eq = x / (x + 1 / x)
    assert gcd_terms(eq, fraction=False) == eq
Beispiel #6
0
def test_gcd_terms():
    f = 2*(x + 1)*(x + 4)/(5*x**2 + 5) + (2*x + 2)*(x + 5)/(x**2 + 1)/5 + \
        (2*x + 2)*(x + 6)/(5*x**2 + 5)

    assert _gcd_terms(f) == (Rational(6, 5)*((1 + x)/(1 + x**2)), 5 + x, 1)
    assert _gcd_terms(Add.make_args(f)) == \
        (Rational(6, 5)*((1 + x)/(1 + x**2)), 5 + x, 1)

    newf = Rational(6, 5)*((1 + x)*(5 + x)/(1 + x**2))
    assert gcd_terms(f) == newf
    args = Add.make_args(f)
    # non-Basic sequences of terms treated as terms of Add
    assert gcd_terms(list(args)) == newf
    assert gcd_terms(tuple(args)) == newf
    assert gcd_terms(set(args)) == newf
    # but a Basic sequence is treated as a container
    assert gcd_terms(Tuple(*args)) != newf
    assert gcd_terms(Basic(Tuple(1, 3*y + 3*x*y), Tuple(1, 3))) == \
        Basic((1, 3*y*(x + 1)), (1, 3))
    # but we shouldn't change keys of a dictionary or some may be lost
    assert gcd_terms(Dict((x*(1 + y), 2), (x + x*y, y + x*y))) == \
        Dict({x*(y + 1): 2, x + x*y: y*(1 + x)})

    assert gcd_terms((2*x + 2)**3 + (2*x + 2)**2) == 4*(x + 1)**2*(2*x + 3)

    assert gcd_terms(0) == 0
    assert gcd_terms(1) == 1
    assert gcd_terms(x) == x
    assert gcd_terms(2 + 2*x) == Mul(2, 1 + x, evaluate=False)
    arg = x*(2*x + 4*y)
    garg = 2*x*(x + 2*y)
    assert gcd_terms(arg) == garg
    assert gcd_terms(sin(arg)) == sin(garg)

    # issue sympy/sympy#6139-like
    alpha, alpha1, alpha2, alpha3 = symbols('alpha:4')
    a = alpha**2 - alpha*x**2 + alpha + x**3 - x*(alpha + 1)
    rep = {alpha: (1 + sqrt(5))/2 + alpha1*x + alpha2*x**2 + alpha3*x**3}
    s = (a/(x - alpha)).subs(rep).series(x, 0, 1)
    assert simplify(collect(s, x)) == -sqrt(5)/2 - Rational(3, 2) + O(x)

    # issue sympy/sympy#5917
    assert _gcd_terms([Integer(0), Integer(0)]) == (0, 0, 1)
    assert _gcd_terms([2*x + 4]) == (2, x + 2, 1)

    eq = x/(x + 1/x)
    assert gcd_terms(eq, fraction=False) == eq
Beispiel #7
0
def radsimp(expr, symbolic=True, max_terms=4):
    """
    Rationalize the denominator by removing square roots.

    Note: the expression returned from radsimp must be used with caution
    since if the denominator contains symbols, it will be possible to make
    substitutions that violate the assumptions of the simplification process:
    that for a denominator matching a + b*sqrt(c), a != +/-b*sqrt(c). (If
    there are no symbols, this assumptions is made valid by collecting terms
    of sqrt(c) so the match variable ``a`` does not contain ``sqrt(c)``.) If
    you do not want the simplification to occur for symbolic denominators, set
    ``symbolic`` to False.

    If there are more than ``max_terms`` radical terms then the expression is
    returned unchanged.

    Examples
    ========

    >>> from diofant import radsimp, sqrt, Symbol, denom, pprint, I
    >>> from diofant import factor_terms, fraction, signsimp
    >>> from diofant.simplify.radsimp import collect_sqrt
    >>> from diofant.abc import a, b, c

    >>> radsimp(1/(I + 1))
    (1 - I)/2
    >>> radsimp(1/(2 + sqrt(2)))
    (-sqrt(2) + 2)/2
    >>> x,y = map(Symbol, 'xy')
    >>> e = ((2 + 2*sqrt(2))*x + (2 + sqrt(8))*y)/(2 + sqrt(2))
    >>> radsimp(e)
    sqrt(2)*(x + y)

    No simplification beyond removal of the gcd is done. One might
    want to polish the result a little, however, by collecting
    square root terms:

    >>> r2 = sqrt(2)
    >>> r5 = sqrt(5)
    >>> ans = radsimp(1/(y*r2 + x*r2 + a*r5 + b*r5))
    >>> pprint(ans, use_unicode=False)
        ___       ___       ___       ___
      \/ 5 *a + \/ 5 *b - \/ 2 *x - \/ 2 *y
    ------------------------------------------
       2               2      2              2
    5*a  + 10*a*b + 5*b  - 2*x  - 4*x*y - 2*y

    >>> n, d = fraction(ans)
    >>> pprint(factor_terms(signsimp(collect_sqrt(n))/d, radical=True), use_unicode=False)
            ___             ___
          \/ 5 *(a + b) - \/ 2 *(x + y)
    ------------------------------------------
       2               2      2              2
    5*a  + 10*a*b + 5*b  - 2*x  - 4*x*y - 2*y

    If radicals in the denominator cannot be removed or there is no denominator,
    the original expression will be returned.

    >>> radsimp(sqrt(2)*x + sqrt(2))
    sqrt(2)*x + sqrt(2)

    Results with symbols will not always be valid for all substitutions:

    >>> eq = 1/(a + b*sqrt(c))
    >>> eq.subs(a, b*sqrt(c))
    1/(2*b*sqrt(c))
    >>> radsimp(eq).subs(a, b*sqrt(c))
    nan

    If symbolic=False, symbolic denominators will not be transformed (but
    numeric denominators will still be processed):

    >>> radsimp(eq, symbolic=False)
    1/(a + b*sqrt(c))

    """
    from diofant.simplify.simplify import signsimp

    syms = symbols("a:d A:D")

    def _num(rterms):
        # return the multiplier that will simplify the expression described
        # by rterms [(sqrt arg, coeff), ... ]
        a, b, c, d, A, B, C, D = syms
        if len(rterms) == 2:
            reps = dict(zip([A, a, B, b], [j for i in rterms for j in i]))
            return (sqrt(A) * a - sqrt(B) * b).xreplace(reps)
        if len(rterms) == 3:
            reps = dict(zip([A, a, B, b, C, c],
                            [j for i in rterms for j in i]))
            return ((sqrt(A) * a + sqrt(B) * b - sqrt(C) * c) *
                    (2 * sqrt(A) * sqrt(B) * a * b - A * a**2 - B * b**2 +
                     C * c**2)).xreplace(reps)
        elif len(rterms) == 4:
            reps = dict(
                zip([A, a, B, b, C, c, D, d], [j for i in rterms for j in i]))
            return (
                (sqrt(A) * a + sqrt(B) * b - sqrt(C) * c - sqrt(D) * d) *
                (2 * sqrt(A) * sqrt(B) * a * b - A * a**2 - B * b**2 -
                 2 * sqrt(C) * sqrt(D) * c * d + C * c**2 + D * d**2) *
                (-8 * sqrt(A) * sqrt(B) * sqrt(C) * sqrt(D) * a * b * c * d +
                 A**2 * a**4 - 2 * A * B * a**2 * b**2 -
                 2 * A * C * a**2 * c**2 - 2 * A * D * a**2 * d**2 +
                 B**2 * b**4 - 2 * B * C * b**2 * c**2 -
                 2 * B * D * b**2 * d**2 + C**2 * c**4 -
                 2 * C * D * c**2 * d**2 + D**2 * d**4)).xreplace(reps)
        elif len(rterms) == 1:
            return sqrt(rterms[0][0])
        else:
            raise NotImplementedError

    def ispow2(d, log2=False):
        if not d.is_Pow:
            return False
        e = d.exp
        if e.is_Rational and e.q == 2 or symbolic and fraction(e)[1] == 2:
            return True
        if log2:
            q = 1
            if e.is_Rational:
                q = e.q
            elif symbolic:
                d = fraction(e)[1]
                if d.is_Integer:
                    q = d
            if q != 1 and log(q, 2).is_Integer:
                return True
        return False

    def handle(expr):
        # Handle first reduces to the case
        # expr = 1/d, where d is an add, or d is base**p/2.
        # We do this by recursively calling handle on each piece.
        from diofant.simplify.simplify import nsimplify

        n, d = fraction(expr)

        if expr.is_Atom or (d.is_Atom and n.is_Atom):
            return expr
        elif not n.is_Atom:
            n = n.func(*[handle(a) for a in n.args])
            return _unevaluated_Mul(n, handle(1 / d))
        elif n is not S.One:
            return _unevaluated_Mul(n, handle(1 / d))
        elif d.is_Mul:
            return _unevaluated_Mul(*[handle(1 / d) for d in d.args])

        # By this step, expr is 1/d, and d is not a mul.
        if not symbolic and d.free_symbols:
            return expr

        if ispow2(d):
            d2 = sqrtdenest(sqrt(d.base))**fraction(d.exp)[0]
            if d2 != d:
                return handle(1 / d2)
        elif d.is_Pow and (d.exp.is_integer or d.base.is_positive):
            # (1/d**i) = (1/d)**i
            return handle(1 / d.base)**d.exp

        if not (d.is_Add or ispow2(d)):
            return 1 / d.func(*[handle(a) for a in d.args])

        # handle 1/d treating d as an Add (though it may not be)

        keep = True  # keep changes that are made

        # flatten it and collect radicals after checking for special
        # conditions
        d = _mexpand(d)

        # did it change?
        if d.is_Atom:
            return 1 / d

        # is it a number that might be handled easily?
        if d.is_number:
            _d = nsimplify(d)
            if _d.is_Number and _d.equals(d):
                return 1 / _d

        while True:
            # collect similar terms
            collected = defaultdict(list)
            for m in Add.make_args(d):  # d might have become non-Add
                p2 = []
                other = []
                for i in Mul.make_args(m):
                    if ispow2(i, log2=True):
                        p2.append(i.base if i.exp is S.Half else i.base**(
                            2 * i.exp))
                    elif i is S.ImaginaryUnit:
                        p2.append(S.NegativeOne)
                    else:
                        other.append(i)
                collected[tuple(ordered(p2))].append(Mul(*other))
            rterms = list(ordered(list(collected.items())))
            rterms = [(Mul(*i), Add(*j)) for i, j in rterms]
            nrad = len(rterms) - (1 if rterms[0][0] is S.One else 0)
            if nrad < 1:
                break
            elif nrad > max_terms:
                # there may have been invalid operations leading to this point
                # so don't keep changes, e.g. this expression is troublesome
                # in collecting terms so as not to raise the issue of 2834:
                # r = sqrt(sqrt(5) + 5)
                # eq = 1/(sqrt(5)*r + 2*sqrt(5)*sqrt(-sqrt(5) + 5) + 5*r)
                keep = False
                break
            if len(rterms) > 4:
                # in general, only 4 terms can be removed with repeated squaring
                # but other considerations can guide selection of radical terms
                # so that radicals are removed
                if all(
                    [x.is_Integer and (y**2).is_Rational for x, y in rterms]):
                    nd, d = rad_rationalize(
                        S.One,
                        Add._from_args([sqrt(x) * y for x, y in rterms]))
                    n *= nd
                else:
                    # is there anything else that might be attempted?
                    keep = False
                break

            from diofant.simplify.powsimp import powsimp, powdenest

            num = powsimp(_num(rterms))
            n *= num
            d *= num
            d = powdenest(_mexpand(d), force=symbolic)
            if d.is_Atom:
                break

        if not keep:
            return expr
        return _unevaluated_Mul(n, 1 / d)

    coeff, expr = expr.as_coeff_Add()
    expr = expr.normal()
    old = fraction(expr)
    n, d = fraction(handle(expr))
    if old != (n, d):
        if not d.is_Atom:
            was = (n, d)
            n = signsimp(n, evaluate=False)
            d = signsimp(d, evaluate=False)
            u = Factors(_unevaluated_Mul(n, 1 / d))
            u = _unevaluated_Mul(*[k**v for k, v in u.factors.items()])
            n, d = fraction(u)
            if old == (n, d):
                n, d = was
        n = expand_mul(n)
        if d.is_Number or d.is_Add:
            n2, d2 = fraction(gcd_terms(_unevaluated_Mul(n, 1 / d)))
            if d2.is_Number or (d2.count_ops() <= d.count_ops()):
                n, d = [signsimp(i) for i in (n2, d2)]
                if n.is_Mul and n.args[0].is_Number:
                    n = n.func(*n.args)

    return coeff + _unevaluated_Mul(n, 1 / d)