Beispiel #1
0
def test_free_symbols():
    a, b, c, d, e, f, s = symbols('a:f,s')
    assert Point(a, b).free_symbols == {a, b}
    assert Line((a, b), (c, d)).free_symbols == {a, b, c, d}
    assert Ray((a, b), (c, d)).free_symbols == {a, b, c, d}
    assert Ray((a, b), angle=c).free_symbols == {a, b, c}
    assert Segment((a, b), (c, d)).free_symbols == {a, b, c, d}
    assert Line((a, b), slope=c).free_symbols == {a, b, c}
    assert Curve((a * s, b * s), (s, c, d)).free_symbols == {a, b, c, d}
    assert Ellipse((a, b), c, d).free_symbols == {a, b, c, d}
    assert Ellipse((a, b), c, eccentricity=d).free_symbols == \
        {a, b, c, d}
    assert Ellipse((a, b), vradius=c, eccentricity=d).free_symbols == \
        {a, b, c, d}
    assert Circle((a, b), c).free_symbols == {a, b, c}
    assert Circle((a, b), (c, d), (e, f)).free_symbols == \
        {e, d, c, b, f, a}
    assert Polygon((a, b), (c, d), (e, f)).free_symbols == \
        {e, b, d, f, a, c}
    assert RegularPolygon((a, b), c, d, e).free_symbols == {e, a, b, c, d}
Beispiel #2
0
def test_geometry_transforms():
    c = Curve((x, x**2), (x, 0, 1))
    pts = [Point(0, 0), Point(1 / 2, 1 / 4), Point(1, 1)]
    cout = Curve((2 * x - 4, 3 * x**2 - 10), (x, 0, 1))
    pts_out = [Point(-4, -10), Point(-3, -37 / 4), Point(-2, -7)]
    assert c.scale(2, 3, (4, 5)) == cout
    assert [c.subs({x: xi / 2}) for xi in Tuple(0, 1, 2)] == pts
    assert [cout.subs({x: xi / 2}) for xi in Tuple(0, 1, 2)] == pts_out
    assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out)

    assert Ellipse((0, 0), 2, 3).scale(2, 3, (4, 5)) == \
        Ellipse(Point(-4, -10), 4, 9)
    assert Circle((0, 0), 2).scale(2, 3, (4, 5)) == \
        Ellipse(Point(-4, -10), 4, 6)
    assert Ellipse((0, 0), 2, 3).scale(3, 3, (4, 5)) == \
        Ellipse(Point(-8, -10), 6, 9)
    assert Circle((0, 0), 2).scale(3, 3, (4, 5)) == \
        Circle(Point(-8, -10), 6)
    assert Circle(Point(-8, -10), 6).scale(1/3, 1/3, (4, 5)) == \
        Circle((0, 0), 2)
    assert Curve((x + y, 3*x), (x, 0, 1)).subs({y: Rational(1, 2)}) == \
        Curve((x + 1/2, 3*x), (x, 0, 1))
    assert Curve((x, 3*x), (x, 0, 1)).translate(4, 5) == \
        Curve((x + 4, 3*x + 5), (x, 0, 1))
    assert Circle((0, 0), 2).translate(4, 5) == \
        Circle((4, 5), 2)
    assert Circle((0, 0), 2).scale(3, 3) == \
        Circle((0, 0), 6)
    assert Point(1, 1).scale(2, 3, (4, 5)) == \
        Point(-2, -7)
    assert Point(1, 1).translate(4, 5) == \
        Point(5, 6)
    assert scale(1, 2, (3, 4)).tolist() == \
        [[1, 0, 0], [0, 2, 0], [0, -4, 1]]
    assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \
        Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13))
Beispiel #3
0
def test_ellipse_geom():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, 0.5, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)

    l1 = Line(p1, p2)

    pytest.raises(ValueError, lambda: e3.arbitrary_point(y1))
    pytest.raises(ValueError, lambda: e3.arbitrary_point(object()))

    assert e1.ambient_dimension == 2

    # Test creation with three points
    cen, rad = Point(1.5, 2), Rational(5, 2)
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    pytest.raises(GeometryError,
                  lambda: Circle(Point(0, 0), Point(1, 1), Point(2, 2)))

    pytest.raises(ValueError, lambda: Ellipse(None, None, None, 1))
    pytest.raises(GeometryError, lambda: Circle(Point(0, 0)))

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert e1 != l1  # issue sympy/sympy#12303
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi / 2
    assert e3.area == pi * y1 * abs(y1)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2 * pi * y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
    assert Ellipse(None, 1, None, 1).circumference == 2 * pi
    assert c1.minor == 1
    assert c1.major == 1
    assert c1.hradius == 1
    assert c1.vradius == 1

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) is False

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(Line(p1, p2)) is False
    assert e1.encloses(Ray(p1, p2)) is False
    assert e1.encloses(e1) is False
    assert e1.encloses(
        Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) is False

    # with generic symbols, the hradius is assumed to contain the major radius
    M = Symbol('M')
    m = Symbol('m')
    c = Ellipse(p1, M, m).circumference
    _x = c.atoms(Dummy).pop()
    assert c == 4 * M * Integral(
        sqrt((1 - _x**2 * (M**2 - m**2) / M**2) / (1 - _x**2)), (_x, 0, 1))

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(0.5, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [
        Line(Point(3 / 2, 1), Point(3 / 2, 1 / 2))
    ]
    assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(5 / 4, 2))]
    assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
    assert not c1.tangent_lines(p1)
    assert e2.is_tangent(Line(p1_2, p2 + Point(0.5, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(0.5, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
    assert c1.is_tangent(e1) is False
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, -1), Point(2,
                                                                  0))) is True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, 0), Point(2,
                                                                 0))) is False
    assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(77/25, 132/25)),
         Line(Point(0, 0), Point(33/5, 22/5))]
    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
        [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
        [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
        [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
         Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]

    e = Ellipse(Point(0, 0), 2, 1)
    assert e.normal_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines(Point(1, 0)) == \
        [Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines((0, 1)) == \
        [Line(Point(0, 0), Point(0, 1))]
    assert e.normal_lines(Point(1, 1), 2) == [
        Line(Point(-51 / 26, -1 / 5), Point(-25 / 26, 17 / 83)),
        Line(Point(28 / 29, -7 / 8), Point(57 / 29, -9 / 2))
    ]
    # test the failure of Poly.intervals and checks a point on the boundary
    p = Point(sqrt(3), Rational(1, 2))
    assert p in e
    assert e.normal_lines(p, 2) == [
        Line(Point(-341 / 171, -1 / 13), Point(-170 / 171, 5 / 64)),
        Line(Point(26 / 15, -1 / 2), Point(41 / 15, -43 / 26))
    ]
    # be sure to use the slope that isn't undefined on boundary
    e = Ellipse((0, 0), 2, 2 * sqrt(3) / 3)
    assert e.normal_lines((1, 1), 2) == [
        Line(Point(-64 / 33, -20 / 71), Point(-31 / 33, 2 / 13)),
        Line(Point(1, -1), Point(2, -4))
    ]
    # general ellipse fails except under certain conditions
    e = Ellipse((0, 0), x, 1)
    assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))]
    pytest.raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1)))

    assert (c1.normal_lines(Point(1, 1)) == [
        Line(Point(-sqrt(2) / 2, -sqrt(2) / 2),
             Point(-sqrt(2) / 2 + 1, -sqrt(2) / 2 + 1)),
        Line(Point(sqrt(2) / 2, -sqrt(2) / 2),
             Point(sqrt(2) / 2 + 1, -1 - sqrt(2) / 2))
    ])

    # Properties
    major = 3
    minor = 1
    e4 = Ellipse(p2, minor, major)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major * (1 - ecc)
    assert e4.apoapsis == major * (1 + ecc)
    # independent of orientation
    e4 = Ellipse(p2, major, minor)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major * (1 - ecc)
    assert e4.apoapsis == major * (1 + ecc)

    # Intersection
    l1 = Line(Point(1, -5), Point(1, 5))
    l2 = Line(Point(-5, -1), Point(5, -1))
    l3 = Line(Point(-1, -1), Point(1, 1))
    l4 = Line(Point(-10, 0), Point(0, 10))
    pts_c1_l3 = [
        Point(sqrt(2) / 2,
              sqrt(2) / 2),
        Point(-sqrt(2) / 2, -sqrt(2) / 2)
    ]

    assert intersection(e2, l4) == []
    assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
    assert intersection(c1, l1) == [Point(1, 0)]
    assert intersection(c1, l2) == [Point(0, -1)]
    assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
    assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
    assert intersection(c1, c3) == [Point(sqrt(2) / 2, sqrt(2) / 2)]
    assert e1.intersection(l1) == [Point(1, 0)]
    assert e2.intersection(l4) == []
    assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
    assert e1.intersection(Circle(Point(5, 0), 1)) == []
    assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
    assert e1.intersection(Ellipse(
        Point(5, 0),
        1,
        1,
    )) == []
    assert e1.intersection(Point(2, 0)) == []
    assert e1.intersection(e1) == e1
    assert e2.intersection(e2) == e2
    assert e2.intersection(Circle(Point(0, 0), 10)) == []

    pytest.raises(NotImplementedError,
                  lambda: e2.intersection(Curve((t**2, t), (t, 0, 1))))

    # some special case intersections
    csmall = Circle(p1, 3)
    cbig = Circle(p1, 5)
    cout = Circle(Point(5, 5), 1)
    # one circle inside of another
    assert csmall.intersection(cbig) == []
    # separate circles
    assert csmall.intersection(cout) == []
    # coincident circles
    assert csmall.intersection(csmall) == csmall

    v = sqrt(2)
    t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
    points = intersection(t1, c1)
    assert len(points) == 4
    assert Point(0, 1) in points
    assert Point(0, -1) in points
    assert Point(v / 2, v / 2) in points
    assert Point(v / 2, -v / 2) in points

    circ = Circle(Point(0, 0), 5)
    elip = Ellipse(Point(0, 0), 5, 20)
    assert intersection(circ, elip) in \
        [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
    assert not elip.tangent_lines(Point(0, 0))
    elip = Ellipse(Point(0, 0), 3, 2)
    assert elip.tangent_lines(Point(3, 0)) == \
        [Line(Point(3, 0), Point(3, -12))]

    e1 = Ellipse(Point(0, 0), 5, 10)
    e2 = Ellipse(Point(2, 1), 4, 8)
    a = 53 / 17
    c = 2 * sqrt(3991) / 17
    ans = [Point(a - c / 8, a / 2 + c), Point(a + c / 8, a / 2 - c)]
    assert e1.intersection(e2) == ans
    e2 = Ellipse(Point(x, y), 4, 8)
    c = sqrt(3991)
    ans = [
        Point(-c / 68 + a, 2 * c / 17 + a / 2),
        Point(c / 68 + a, -2 * c / 17 + a / 2)
    ]
    assert [p.subs({x: 2, y: 1}) for p in e1.intersection(e2)] == ans

    # Combinations of above
    assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])

    e = Ellipse((1, 2), 3, 2)
    assert e.tangent_lines(Point(10, 0)) == \
        [Line(Point(10, 0), Point(1, 0)),
         Line(Point(10, 0), Point(14/5, 18/5))]

    # encloses_point
    e = Ellipse((0, 0), 1, 2)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(e.center +
                            Point(e.hradius + Rational(1, 10), 0)) is False
    e = Ellipse((0, 0), 2, 1)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(e.center +
                            Point(e.hradius + Rational(1, 10), 0)) is False
    assert c1.encloses_point(Point(1, 0)) is False
    assert c1.encloses_point(Point(0.3, 0.4)) is True

    assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
    assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
    assert e.rotate(pi) == e
    assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1)
    pytest.raises(NotImplementedError, lambda: e.rotate(pi / 3))

    # Circle rotation tests (issue sympy/sympy#11743)
    cir = Circle(Point(1, 0), 1)
    assert cir.rotate(pi / 2) == Circle(Point(0, 1), 1)
    assert cir.rotate(pi / 3) == Circle(Point(Rational(1, 2), sqrt(3) / 2), 1)
    assert cir.rotate(pi / 3, Point(1, 0)) == Circle(Point(1, 0), 1)
    assert cir.rotate(pi / 3, Point(0, 1)) == Circle(
        Point(Rational(1, 2) + sqrt(3) / 2,
              Rational(1, 2) + sqrt(3) / 2), 1)

    # transformations
    c = Circle((1, 1), 2)
    assert c.scale(-1) == Circle((-1, 1), 2)
    assert c.scale(y=-1) == Circle((1, -1), 2)
    assert c.scale(2) == Ellipse((2, 1), 4, 2)

    e1 = Ellipse(Point(1, 0), 3, 2)
    assert (e1.evolute() == root(4, 3) * y**Rational(2, 3) +
            (3 * x - 3)**Rational(2, 3) - root(25, 3))

    e1 = Ellipse(Point(0, 0), 3, 2)
    p1 = e1.random_point(seed=0)
    assert p1.evalf(2) == Point(2.0664, 1.4492)

    assert Ellipse((1, 0), 2, 1).rotate(pi / 2) == Ellipse(Point(0, 1), 1, 2)
Beispiel #4
0
def test_curve():
    s = Symbol('s')
    z = Symbol('z')

    # this curve is independent of the indicated parameter
    c = Curve([2 * s, s**2], (z, 0, 2))

    assert c.parameter == z
    assert c.functions == (2 * s, s**2)
    assert c.arbitrary_point() == Point(2 * s, s**2)
    assert c.arbitrary_point(z) == Point(2 * s, s**2)

    # this is how it is normally used
    c = Curve([2 * s, s**2], (s, 0, 2))

    assert c.parameter == s
    assert c.functions == (2 * s, s**2)
    t = Symbol('t')
    # the t returned as assumptions
    assert c.arbitrary_point() != Point(2 * t, t**2)
    t = Symbol('t', extended_real=True)
    # now t has the same assumptions so the test passes
    assert c.arbitrary_point() == Point(2 * t, t**2)
    assert c.arbitrary_point(z) == Point(2 * z, z**2)
    assert c.arbitrary_point(c.parameter) == Point(2 * s, s**2)
    assert c.arbitrary_point(None) == Point(2 * s, s**2)
    assert c.plot_interval() == [t, 0, 2]
    assert c.plot_interval(z) == [z, 0, 2]

    assert Curve([x, x], (x, 0, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate(
        1, 3).arbitrary_point(s) == \
        Line((0, 0), (1, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate(
            1, 3).arbitrary_point(s) == \
        Point(-2*s + 7, 3*s + 6)

    pytest.raises(ValueError, lambda: Curve((s), (s, 1, 2)))
    pytest.raises(ValueError, lambda: Curve((x, x * 2), (1, x)))

    pytest.raises(ValueError, lambda: Curve((s, s + t),
                                            (s, 1, 2)).arbitrary_point())
    pytest.raises(ValueError, lambda: Curve((s, s + t),
                                            (t, 1, 2)).arbitrary_point(s))

    assert Curve((t, t), (t, 0, 1)).plot_interval() == [t, 0, 1]