def test_free_symbols(): a, b, c, d, e, f, s = symbols('a:f,s') assert Point(a, b).free_symbols == {a, b} assert Line((a, b), (c, d)).free_symbols == {a, b, c, d} assert Ray((a, b), (c, d)).free_symbols == {a, b, c, d} assert Ray((a, b), angle=c).free_symbols == {a, b, c} assert Segment((a, b), (c, d)).free_symbols == {a, b, c, d} assert Line((a, b), slope=c).free_symbols == {a, b, c} assert Curve((a * s, b * s), (s, c, d)).free_symbols == {a, b, c, d} assert Ellipse((a, b), c, d).free_symbols == {a, b, c, d} assert Ellipse((a, b), c, eccentricity=d).free_symbols == \ {a, b, c, d} assert Ellipse((a, b), vradius=c, eccentricity=d).free_symbols == \ {a, b, c, d} assert Circle((a, b), c).free_symbols == {a, b, c} assert Circle((a, b), (c, d), (e, f)).free_symbols == \ {e, d, c, b, f, a} assert Polygon((a, b), (c, d), (e, f)).free_symbols == \ {e, b, d, f, a, c} assert RegularPolygon((a, b), c, d, e).free_symbols == {e, a, b, c, d}
def test_geometry_transforms(): c = Curve((x, x**2), (x, 0, 1)) pts = [Point(0, 0), Point(1 / 2, 1 / 4), Point(1, 1)] cout = Curve((2 * x - 4, 3 * x**2 - 10), (x, 0, 1)) pts_out = [Point(-4, -10), Point(-3, -37 / 4), Point(-2, -7)] assert c.scale(2, 3, (4, 5)) == cout assert [c.subs({x: xi / 2}) for xi in Tuple(0, 1, 2)] == pts assert [cout.subs({x: xi / 2}) for xi in Tuple(0, 1, 2)] == pts_out assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out) assert Ellipse((0, 0), 2, 3).scale(2, 3, (4, 5)) == \ Ellipse(Point(-4, -10), 4, 9) assert Circle((0, 0), 2).scale(2, 3, (4, 5)) == \ Ellipse(Point(-4, -10), 4, 6) assert Ellipse((0, 0), 2, 3).scale(3, 3, (4, 5)) == \ Ellipse(Point(-8, -10), 6, 9) assert Circle((0, 0), 2).scale(3, 3, (4, 5)) == \ Circle(Point(-8, -10), 6) assert Circle(Point(-8, -10), 6).scale(1/3, 1/3, (4, 5)) == \ Circle((0, 0), 2) assert Curve((x + y, 3*x), (x, 0, 1)).subs({y: Rational(1, 2)}) == \ Curve((x + 1/2, 3*x), (x, 0, 1)) assert Curve((x, 3*x), (x, 0, 1)).translate(4, 5) == \ Curve((x + 4, 3*x + 5), (x, 0, 1)) assert Circle((0, 0), 2).translate(4, 5) == \ Circle((4, 5), 2) assert Circle((0, 0), 2).scale(3, 3) == \ Circle((0, 0), 6) assert Point(1, 1).scale(2, 3, (4, 5)) == \ Point(-2, -7) assert Point(1, 1).translate(4, 5) == \ Point(5, 6) assert scale(1, 2, (3, 4)).tolist() == \ [[1, 0, 0], [0, 2, 0], [0, -4, 1]] assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \ Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13))
def test_ellipse_geom(): p1 = Point(0, 0) p2 = Point(1, 1) p4 = Point(0, 1) e1 = Ellipse(p1, 1, 1) e2 = Ellipse(p2, 0.5, 1) e3 = Ellipse(p1, y1, y1) c1 = Circle(p1, 1) c2 = Circle(p2, 1) c3 = Circle(Point(sqrt(2), sqrt(2)), 1) l1 = Line(p1, p2) pytest.raises(ValueError, lambda: e3.arbitrary_point(y1)) pytest.raises(ValueError, lambda: e3.arbitrary_point(object())) assert e1.ambient_dimension == 2 # Test creation with three points cen, rad = Point(1.5, 2), Rational(5, 2) assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad) pytest.raises(GeometryError, lambda: Circle(Point(0, 0), Point(1, 1), Point(2, 2))) pytest.raises(ValueError, lambda: Ellipse(None, None, None, 1)) pytest.raises(GeometryError, lambda: Circle(Point(0, 0))) # Basic Stuff assert Ellipse(None, 1, 1).center == Point(0, 0) assert e1 == c1 assert e1 != e2 assert e1 != l1 # issue sympy/sympy#12303 assert p4 in e1 assert p2 not in e2 assert e1.area == pi assert e2.area == pi / 2 assert e3.area == pi * y1 * abs(y1) assert c1.area == e1.area assert c1.circumference == e1.circumference assert e3.circumference == 2 * pi * y1 assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi] assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi] assert Ellipse(None, 1, None, 1).circumference == 2 * pi assert c1.minor == 1 assert c1.major == 1 assert c1.hradius == 1 assert c1.vradius == 1 # Private Functions assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1))) assert c1 in e1 assert (Line(p1, p2) in e1) is False # Encloses assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True assert e1.encloses(Line(p1, p2)) is False assert e1.encloses(Ray(p1, p2)) is False assert e1.encloses(e1) is False assert e1.encloses( Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True assert e1.encloses(RegularPolygon(p1, 5, 3)) is False assert e1.encloses(RegularPolygon(p2, 5, 3)) is False # with generic symbols, the hradius is assumed to contain the major radius M = Symbol('M') m = Symbol('m') c = Ellipse(p1, M, m).circumference _x = c.atoms(Dummy).pop() assert c == 4 * M * Integral( sqrt((1 - _x**2 * (M**2 - m**2) / M**2) / (1 - _x**2)), (_x, 0, 1)) assert e2.arbitrary_point() in e2 # Foci f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0) ef = Ellipse(Point(0, 0), 4, 2) assert ef.foci in [(f1, f2), (f2, f1)] # Tangents v = sqrt(2) / 2 p1_1 = Point(v, v) p1_2 = p2 + Point(0.5, 0) p1_3 = p2 + Point(0, 1) assert e1.tangent_lines(p4) == c1.tangent_lines(p4) assert e2.tangent_lines(p1_2) == [ Line(Point(3 / 2, 1), Point(3 / 2, 1 / 2)) ] assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(5 / 4, 2))] assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))] assert not c1.tangent_lines(p1) assert e2.is_tangent(Line(p1_2, p2 + Point(0.5, 1))) assert e2.is_tangent(Line(p1_3, p2 + Point(0.5, 1))) assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2)))) assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False assert c1.is_tangent(e1) is False assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True assert c1.is_tangent(Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True assert c1.is_tangent(Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \ [Line(Point(0, 0), Point(77/25, 132/25)), Line(Point(0, 0), Point(33/5, 22/5))] assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \ [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))] assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \ [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))] assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \ [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))), Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ] e = Ellipse(Point(0, 0), 2, 1) assert e.normal_lines(Point(0, 0)) == \ [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))] assert e.normal_lines(Point(1, 0)) == \ [Line(Point(0, 0), Point(1, 0))] assert e.normal_lines((0, 1)) == \ [Line(Point(0, 0), Point(0, 1))] assert e.normal_lines(Point(1, 1), 2) == [ Line(Point(-51 / 26, -1 / 5), Point(-25 / 26, 17 / 83)), Line(Point(28 / 29, -7 / 8), Point(57 / 29, -9 / 2)) ] # test the failure of Poly.intervals and checks a point on the boundary p = Point(sqrt(3), Rational(1, 2)) assert p in e assert e.normal_lines(p, 2) == [ Line(Point(-341 / 171, -1 / 13), Point(-170 / 171, 5 / 64)), Line(Point(26 / 15, -1 / 2), Point(41 / 15, -43 / 26)) ] # be sure to use the slope that isn't undefined on boundary e = Ellipse((0, 0), 2, 2 * sqrt(3) / 3) assert e.normal_lines((1, 1), 2) == [ Line(Point(-64 / 33, -20 / 71), Point(-31 / 33, 2 / 13)), Line(Point(1, -1), Point(2, -4)) ] # general ellipse fails except under certain conditions e = Ellipse((0, 0), x, 1) assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))] pytest.raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1))) assert (c1.normal_lines(Point(1, 1)) == [ Line(Point(-sqrt(2) / 2, -sqrt(2) / 2), Point(-sqrt(2) / 2 + 1, -sqrt(2) / 2 + 1)), Line(Point(sqrt(2) / 2, -sqrt(2) / 2), Point(sqrt(2) / 2 + 1, -1 - sqrt(2) / 2)) ]) # Properties major = 3 minor = 1 e4 = Ellipse(p2, minor, major) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major * (1 - ecc) assert e4.apoapsis == major * (1 + ecc) # independent of orientation e4 = Ellipse(p2, major, minor) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major * (1 - ecc) assert e4.apoapsis == major * (1 + ecc) # Intersection l1 = Line(Point(1, -5), Point(1, 5)) l2 = Line(Point(-5, -1), Point(5, -1)) l3 = Line(Point(-1, -1), Point(1, 1)) l4 = Line(Point(-10, 0), Point(0, 10)) pts_c1_l3 = [ Point(sqrt(2) / 2, sqrt(2) / 2), Point(-sqrt(2) / 2, -sqrt(2) / 2) ] assert intersection(e2, l4) == [] assert intersection(c1, Point(1, 0)) == [Point(1, 0)] assert intersection(c1, l1) == [Point(1, 0)] assert intersection(c1, l2) == [Point(0, -1)] assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]] assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)] assert intersection(c1, c3) == [Point(sqrt(2) / 2, sqrt(2) / 2)] assert e1.intersection(l1) == [Point(1, 0)] assert e2.intersection(l4) == [] assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)] assert e1.intersection(Circle(Point(5, 0), 1)) == [] assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)] assert e1.intersection(Ellipse( Point(5, 0), 1, 1, )) == [] assert e1.intersection(Point(2, 0)) == [] assert e1.intersection(e1) == e1 assert e2.intersection(e2) == e2 assert e2.intersection(Circle(Point(0, 0), 10)) == [] pytest.raises(NotImplementedError, lambda: e2.intersection(Curve((t**2, t), (t, 0, 1)))) # some special case intersections csmall = Circle(p1, 3) cbig = Circle(p1, 5) cout = Circle(Point(5, 5), 1) # one circle inside of another assert csmall.intersection(cbig) == [] # separate circles assert csmall.intersection(cout) == [] # coincident circles assert csmall.intersection(csmall) == csmall v = sqrt(2) t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0)) points = intersection(t1, c1) assert len(points) == 4 assert Point(0, 1) in points assert Point(0, -1) in points assert Point(v / 2, v / 2) in points assert Point(v / 2, -v / 2) in points circ = Circle(Point(0, 0), 5) elip = Ellipse(Point(0, 0), 5, 20) assert intersection(circ, elip) in \ [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]] assert not elip.tangent_lines(Point(0, 0)) elip = Ellipse(Point(0, 0), 3, 2) assert elip.tangent_lines(Point(3, 0)) == \ [Line(Point(3, 0), Point(3, -12))] e1 = Ellipse(Point(0, 0), 5, 10) e2 = Ellipse(Point(2, 1), 4, 8) a = 53 / 17 c = 2 * sqrt(3991) / 17 ans = [Point(a - c / 8, a / 2 + c), Point(a + c / 8, a / 2 - c)] assert e1.intersection(e2) == ans e2 = Ellipse(Point(x, y), 4, 8) c = sqrt(3991) ans = [ Point(-c / 68 + a, 2 * c / 17 + a / 2), Point(c / 68 + a, -2 * c / 17 + a / 2) ] assert [p.subs({x: 2, y: 1}) for p in e1.intersection(e2)] == ans # Combinations of above assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0]) e = Ellipse((1, 2), 3, 2) assert e.tangent_lines(Point(10, 0)) == \ [Line(Point(10, 0), Point(1, 0)), Line(Point(10, 0), Point(14/5, 18/5))] # encloses_point e = Ellipse((0, 0), 1, 2) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point(e.center + Point(e.hradius + Rational(1, 10), 0)) is False e = Ellipse((0, 0), 2, 1) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point(e.center + Point(e.hradius + Rational(1, 10), 0)) is False assert c1.encloses_point(Point(1, 0)) is False assert c1.encloses_point(Point(0.3, 0.4)) is True assert e.scale(2, 3) == Ellipse((0, 0), 4, 3) assert e.scale(3, 6) == Ellipse((0, 0), 6, 6) assert e.rotate(pi) == e assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1) pytest.raises(NotImplementedError, lambda: e.rotate(pi / 3)) # Circle rotation tests (issue sympy/sympy#11743) cir = Circle(Point(1, 0), 1) assert cir.rotate(pi / 2) == Circle(Point(0, 1), 1) assert cir.rotate(pi / 3) == Circle(Point(Rational(1, 2), sqrt(3) / 2), 1) assert cir.rotate(pi / 3, Point(1, 0)) == Circle(Point(1, 0), 1) assert cir.rotate(pi / 3, Point(0, 1)) == Circle( Point(Rational(1, 2) + sqrt(3) / 2, Rational(1, 2) + sqrt(3) / 2), 1) # transformations c = Circle((1, 1), 2) assert c.scale(-1) == Circle((-1, 1), 2) assert c.scale(y=-1) == Circle((1, -1), 2) assert c.scale(2) == Ellipse((2, 1), 4, 2) e1 = Ellipse(Point(1, 0), 3, 2) assert (e1.evolute() == root(4, 3) * y**Rational(2, 3) + (3 * x - 3)**Rational(2, 3) - root(25, 3)) e1 = Ellipse(Point(0, 0), 3, 2) p1 = e1.random_point(seed=0) assert p1.evalf(2) == Point(2.0664, 1.4492) assert Ellipse((1, 0), 2, 1).rotate(pi / 2) == Ellipse(Point(0, 1), 1, 2)
def test_curve(): s = Symbol('s') z = Symbol('z') # this curve is independent of the indicated parameter c = Curve([2 * s, s**2], (z, 0, 2)) assert c.parameter == z assert c.functions == (2 * s, s**2) assert c.arbitrary_point() == Point(2 * s, s**2) assert c.arbitrary_point(z) == Point(2 * s, s**2) # this is how it is normally used c = Curve([2 * s, s**2], (s, 0, 2)) assert c.parameter == s assert c.functions == (2 * s, s**2) t = Symbol('t') # the t returned as assumptions assert c.arbitrary_point() != Point(2 * t, t**2) t = Symbol('t', extended_real=True) # now t has the same assumptions so the test passes assert c.arbitrary_point() == Point(2 * t, t**2) assert c.arbitrary_point(z) == Point(2 * z, z**2) assert c.arbitrary_point(c.parameter) == Point(2 * s, s**2) assert c.arbitrary_point(None) == Point(2 * s, s**2) assert c.plot_interval() == [t, 0, 2] assert c.plot_interval(z) == [z, 0, 2] assert Curve([x, x], (x, 0, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate( 1, 3).arbitrary_point(s) == \ Line((0, 0), (1, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate( 1, 3).arbitrary_point(s) == \ Point(-2*s + 7, 3*s + 6) pytest.raises(ValueError, lambda: Curve((s), (s, 1, 2))) pytest.raises(ValueError, lambda: Curve((x, x * 2), (1, x))) pytest.raises(ValueError, lambda: Curve((s, s + t), (s, 1, 2)).arbitrary_point()) pytest.raises(ValueError, lambda: Curve((s, s + t), (t, 1, 2)).arbitrary_point(s)) assert Curve((t, t), (t, 0, 1)).plot_interval() == [t, 0, 1]