Beispiel #1
1
def test_point3D():
    p1 = Point3D(x1, x2, x3)
    p2 = Point3D(y1, y2, y3)
    p3 = Point3D(0, 0, 0)
    p4 = Point3D(1, 1, 1)
    p5 = Point3D(0, 1, 2)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3)
    assert p4*5 == Point3D(5, 5, 5)
    assert -p2 == Point3D(-y1, -y2, -y3)

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point3D.midpoint(p3, p4) == Point3D(half, half, half)
    assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2,
                                               half + half*x3)
    assert Point3D.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point3D.distance(p3, p4) == sqrt(3)
    assert Point3D.distance(p1, p1) == 0
    assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2)

    p1_1 = Point3D(x1, x1, x1)
    p1_2 = Point3D(y2, y2, y2)
    p1_3 = Point3D(x1 + 1, x1, x1)
    # according to the description in the docs, points are collinear
    # if they like on a single line.  Thus a single point should always
    # be collinear
    assert Point3D.are_collinear(p3)
    assert Point3D.are_collinear(p3, p4)
    assert Point3D.are_collinear(p3, p4, p1_1, p1_2)
    assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False
    assert Point3D.are_collinear(p3, p3, p4, p5) is False

    assert p3.intersection(Point3D(0, 0, 0)) == [p3]
    assert p3.intersection(p4) == []

    assert p4 * 5 == Point3D(5, 5, 5)
    assert p4 / 5 == Point3D(0.2, 0.2, 0.2)

    pytest.raises(ValueError, lambda: Point3D(0, 0, 0) + 10)

    # Point differences should be simplified
    assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \
        Point3D(0, -1, 1)

    a, b = Rational(1, 2), Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.evalf(2), b.evalf(2))
    pytest.raises(ValueError, lambda: Point(1, 2) + 1)

    # test transformations
    p = Point3D(1, 1, 1)
    assert p.scale(2, 3) == Point3D(2, 3, 1)
    assert p.translate(1, 2) == Point3D(2, 3, 1)
    assert p.translate(1) == Point3D(2, 1, 1)
    assert p.translate(z=1) == Point3D(1, 1, 2)
    assert p.translate(*p.args) == Point3D(2, 2, 2)

    # Test __new__
    assert Point3D(Point3D(1, 2, 3), 4, 5, evaluate=False) == Point3D(1, 2, 3)

    # Test length property returns correctly
    assert p.length == 0
    assert p1_1.length == 0
    assert p1_2.length == 0

    # Test are_colinear type error
    pytest.raises(TypeError, lambda: Point3D.are_collinear(p, x))

    # Test are_coplanar
    planar2 = Point3D(1, -1, 1)
    planar3 = Point3D(-1, 1, 1)
    assert Point3D.are_coplanar(p, planar2, planar3) is True
    assert Point3D.are_coplanar(p, planar2, planar3, p3) is False
    pytest.raises(ValueError, lambda: Point3D.are_coplanar(p, planar2))
    planar2 = Point3D(1, 1, 2)
    planar3 = Point3D(1, 1, 3)
    pytest.raises(ValueError, lambda: Point3D.are_coplanar(p, planar2, planar3))

    # Test Intersection
    assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)]

    # Test Scale
    assert planar2.scale(1, 1, 1) == planar2
    assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1)
    assert planar2.scale(1, 1, 1, p3) == planar2

    # Test Transform
    identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
    assert p.transform(identity) == p
    trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]])
    assert p.transform(trans) == Point3D(2, 2, 2)
    pytest.raises(ValueError, lambda: p.transform(p))
    pytest.raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))

    # Test Equals
    assert p.equals(x1) is False

    # Test __sub__
    p_2d = Point(0, 0)
    pytest.raises(ValueError, lambda: (p - p_2d))
Beispiel #2
0
def test_direction_cosine():
    p1 = Point3D(0, 0, 0)
    p2 = Point3D(1, 1, 1)

    assert p1.direction_cosine(Point3D(1, 0, 0)) == [1, 0, 0]
    assert p1.direction_cosine(Point3D(0, 1, 0)) == [0, 1, 0]
    assert p1.direction_cosine(Point3D(0, 0, pi)) == [0, 0, 1]

    assert p1.direction_cosine(Point3D(5, 0, 0)) == [1, 0, 0]
    assert p1.direction_cosine(Point3D(0, sqrt(3), 0)) == [0, 1, 0]
    assert p1.direction_cosine(Point3D(0, 0, 5)) == [0, 0, 1]

    assert p1.direction_cosine(Point3D(2.4, 2.4,
                                       0)) == [sqrt(2) / 2,
                                               sqrt(2) / 2, 0]
    assert p1.direction_cosine(Point3D(
        1, 1, 1)) == [sqrt(3) / 3, sqrt(3) / 3,
                      sqrt(3) / 3]
    assert p1.direction_cosine(Point3D(
        -12, 0, -15)) == [-4 * sqrt(41) / 41, 0, -5 * sqrt(41) / 41]

    assert p2.direction_cosine(Point3D(
        0, 0, 0)) == [-sqrt(3) / 3, -sqrt(3) / 3, -sqrt(3) / 3]
    assert p2.direction_cosine(Point3D(1, 1, 12)) == [0, 0, 1]
    assert p2.direction_cosine(Point3D(12, 1,
                                       12)) == [sqrt(2) / 2, 0,
                                                sqrt(2) / 2]
Beispiel #3
0
def test_sympyissue_9214():
    p1 = Point3D(4, -2, 6)
    p2 = Point3D(1, 2, 3)
    p3 = Point3D(7, 2, 3)

    assert Point3D.are_collinear(p1, p2, p3) is False
Beispiel #4
0
def test_point3D():
    p1 = Point3D(x1, x2, x3)
    p2 = Point3D(y1, y2, y3)
    p3 = Point3D(0, 0, 0)
    p4 = Point3D(1, 1, 1)
    p5 = Point3D(0, 1, 2)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3)
    assert p4 * 5 == Point3D(5, 5, 5)
    assert -p2 == Point3D(-y1, -y2, -y3)

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point3D.midpoint(p3, p4) == Point3D(half, half, half)
    assert Point3D.midpoint(p1,
                            p4) == Point3D(half + half * x1, half + half * x2,
                                           half + half * x3)
    assert Point3D.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point3D.distance(p3, p4) == sqrt(3)
    assert Point3D.distance(p1, p1) == 0
    assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2)

    p1_1 = Point3D(x1, x1, x1)
    p1_2 = Point3D(y2, y2, y2)
    p1_3 = Point3D(x1 + 1, x1, x1)
    # according to the description in the docs, points are collinear
    # if they like on a single line.  Thus a single point should always
    # be collinear
    assert Point3D.are_collinear(p3)
    assert Point3D.are_collinear(p3, p4)
    assert Point3D.are_collinear(p3, p4, p1_1, p1_2)
    assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False
    assert Point3D.are_collinear(p3, p3, p4, p5) is False

    assert p3.intersection(Point3D(0, 0, 0)) == [p3]
    assert p3.intersection(p4) == []

    assert p4 * 5 == Point3D(5, 5, 5)
    assert p4 / 5 == Point3D(0.2, 0.2, 0.2)

    pytest.raises(ValueError, lambda: Point3D(0, 0, 0) + 10)

    # Point differences should be simplified
    assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \
        Point3D(0, -1, 1)

    a, b = Rational(1, 2), Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.evalf(2), b.evalf(2))
    pytest.raises(ValueError, lambda: Point(1, 2) + 1)

    # test transformations
    p = Point3D(1, 1, 1)
    assert p.scale(2, 3) == Point3D(2, 3, 1)
    assert p.translate(1, 2) == Point3D(2, 3, 1)
    assert p.translate(1) == Point3D(2, 1, 1)
    assert p.translate(z=1) == Point3D(1, 1, 2)
    assert p.translate(*p.args) == Point3D(2, 2, 2)

    # Test __new__
    assert Point3D(Point3D(1, 2, 3), 4, 5, evaluate=False) == Point3D(1, 2, 3)

    # Test length property returns correctly
    assert p.length == 0
    assert p1_1.length == 0
    assert p1_2.length == 0

    # Test are_colinear type error
    pytest.raises(TypeError, lambda: Point3D.are_collinear(p, x))

    # Test are_coplanar
    planar2 = Point3D(1, -1, 1)
    planar3 = Point3D(-1, 1, 1)
    assert Point3D.are_coplanar(p, planar2, planar3) is True
    assert Point3D.are_coplanar(p, planar2, planar3, p3) is False
    pytest.raises(ValueError, lambda: Point3D.are_coplanar(p, planar2))
    planar2 = Point3D(1, 1, 2)
    planar3 = Point3D(1, 1, 3)
    pytest.raises(ValueError,
                  lambda: Point3D.are_coplanar(p, planar2, planar3))

    # Test Intersection
    assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)]

    # Test Scale
    assert planar2.scale(1, 1, 1) == planar2
    assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1)
    assert planar2.scale(1, 1, 1, p3) == planar2

    # Test Transform
    identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
    assert p.transform(identity) == p
    trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]])
    assert p.transform(trans) == Point3D(2, 2, 2)
    pytest.raises(ValueError, lambda: p.transform(p))
    pytest.raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))

    # Test Equals
    assert p.equals(x1) is False

    # Test __sub__
    p_2d = Point(0, 0)
    pytest.raises(ValueError, lambda: (p - p_2d))
Beispiel #5
0
def test_plane():
    p1 = Point3D(0, 0, 0)
    p2 = Point3D(1, 1, 1)
    p3 = Point3D(1, 2, 3)
    p4 = Point3D(x, x, x)
    p5 = Point3D(y, y, y)

    pl3 = Plane(p1, p2, p3)
    pl4 = Plane(p1, normal_vector=(1, 1, 1))
    pl4b = Plane(p1, p2)
    pl5 = Plane(p3, normal_vector=(1, 2, 3))
    pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2))
    pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1))

    l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
    l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
    l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))

    assert Plane(p1, p2, p3) != Plane(p1, p3, p2)
    assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2))
    assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1))
    assert pl3 != pl4
    assert pl4 == pl4b
    assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3))

    assert pl5.equation(x, y, z) == x + 2 * y + 3 * z - 14
    assert pl3.equation(x, y, z) == x - 2 * y + z

    assert pl3.p1 == p1
    assert pl4.p1 == p1
    assert pl5.p1 == p3

    assert pl4.normal_vector == (1, 1, 1)
    assert pl5.normal_vector == (1, 2, 3)

    assert p1 in pl3
    assert p1 in pl4
    assert p3 in pl5

    assert pl3.projection(Point(0, 0)) == p1
    p = pl3.projection(Point3D(1, 1, 0))
    assert p == Point3D(7 / 6, 2 / 3, 1 / 6)
    assert p in pl3

    l = pl3.projection_line(Line(Point(0, 0), Point(1, 1)))
    assert l == Line3D(Point3D(0, 0, 0), Point3D(7 / 6, 2 / 3, 1 / 6))
    assert l in pl3
    # get a segment that does not intersect the plane which is also
    # parallel to pl3's normal veector
    t = Dummy()
    r = pl3.random_point()
    a = pl3.perpendicular_line(r).arbitrary_point(t)
    s = Segment3D(a.subs(t, 1), a.subs(t, 2))
    assert s.p1 not in pl3 and s.p2 not in pl3
    assert pl3.projection_line(s).equals(r)
    assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == \
               Segment3D(Point3D(5/6, 1/3, -1/6), Point3D(7/6, 2/3, 1/6))
    assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == \
               Ray3D(Point3D(14/3, 11/3, 11/3), Point3D(13/3, 13/3, 10/3))
    assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r)

    assert pl3.is_parallel(pl6) is False
    assert pl4.is_parallel(pl6)
    assert pl6.is_parallel(l1) is False

    assert pl3.is_perpendicular(pl6)
    assert pl4.is_perpendicular(pl7)
    assert pl6.is_perpendicular(pl7)
    assert pl6.is_perpendicular(l1) is False

    assert pl7.distance(Point3D(1, 3, 5)) == 5 * sqrt(6) / 6
    assert pl6.distance(Point3D(0, 0, 0)) == 4 * sqrt(3)
    assert pl6.distance(pl6.p1) == 0
    assert pl7.distance(pl6) == 0
    assert pl7.distance(l1) == 0
    assert pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == 0
    pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3)

    assert pl6.angle_between(pl3) == pi / 2
    assert pl6.angle_between(pl6) == 0
    assert pl6.angle_between(pl4) == 0
    assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == \
        -asin(sqrt(3)/6)
    assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == \
        asin(sqrt(7)/3)
    assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == \
        -asin(7*sqrt(246)/246)

    assert are_coplanar(l1, l2, l3) is False
    assert are_coplanar(l1) is False
    assert are_coplanar(Point3D(2, 7, 2), Point3D(0, 0, 2), Point3D(1, 1, 2),
                        Point3D(1, 2, 2))
    assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2))
    assert Plane.are_concurrent(pl3, pl4, pl5) is False
    assert Plane.are_concurrent(pl6) is False
    pytest.raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0)))

    assert pl3.parallel_plane(Point3D(1, 2,
                                      5)) == Plane(Point3D(1, 2, 5),
                                                   normal_vector=(1, -2, 1))

    # perpendicular_plane
    p = Plane((0, 0, 0), (1, 0, 0))
    # default
    assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0))
    # 1 pt
    assert p.perpendicular_plane(Point3D(1, 0, 1)) == \
        Plane(Point3D(1, 0, 1), (0, 1, 0))
    # pts as tuples
    assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == \
        Plane(Point3D(1, 0, 1), (0, 0, -1))

    a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
    Z = (0, 0, 1)
    p = Plane(a, normal_vector=Z)
    # case 4
    assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0))
    n = Point3D(*Z)
    # case 1
    assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0))
    # case 2
    assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == \
        Plane(Point3D(0, 0, 0), (1, 0, 0))
    # case 1&3
    assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == \
        Plane(Point3D(0, 1, 0), (-1, 0, 0))
    # case 2&3
    assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == \
        Plane(Point3D(0, 0, 1), (1, 0, 0))

    assert pl6.intersection(pl6) == [pl6]
    assert pl4.intersection(pl4.p1) == [pl4.p1]
    assert pl3.intersection(pl6) == [
        Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))
    ]
    assert pl3.intersection(Line3D(Point3D(1, 2, 4),
                                   Point3D(4, 4,
                                           2))) == [Point3D(2, 8 / 3, 10 / 3)]
    assert pl3.intersection(Plane(Point3D(6, 0, 0),
                                  normal_vector=(2, -5, 3))) == [
                                      Line3D(Point3D(-24, -12, 0),
                                             Point3D(-25, -13, -1))
                                  ]
    assert pl6.intersection(Ray3D(Point3D(2, 3, 1),
                                  Point3D(1, 3, 4))) == [Point3D(-1, 3, 10)]
    assert pl6.intersection(Segment3D(Point3D(2, 3, 1),
                                      Point3D(1, 3,
                                              4))) == [Point3D(-1, 3, 10)]
    assert pl7.intersection(Line(Point(2, 3),
                                 Point(4, 2))) == [Point3D(13 / 2, 3 / 4, 0)]
    r = Ray(Point(2, 3), Point(4, 2))
    assert Plane((1, 2, 0), normal_vector=(0, 0, 1)).intersection(r) == [
        Ray3D(Point(2, 3), Point(4, 2))
    ]

    assert pl3.random_point() in pl3

    # issue 8570
    l2 = Line3D(
        Point3D(Rational(50000004459633, 5000000000000),
                Rational(-891926590718643, 1000000000000000),
                Rational(231800966893633, 100000000000000)),
        Point3D(Rational(50000004459633, 50000000000000),
                Rational(-222981647679771, 250000000000000),
                Rational(231800966893633, 100000000000000)))

    p2 = Plane(
        Point3D(Rational(402775636372767, 100000000000000),
                Rational(-97224357654973, 100000000000000),
                Rational(216793600814789, 100000000000000)),
        (-Float(9.00000087501922), Float(-4.81170658872543e-13), Float(0.0)))

    assert sstr([i.n(2) for i in p2.intersection(l2)]) == \
           '[Point3D(4.0, -0.89, 2.3)]'
Beispiel #6
0
def test_line3d():
    p1 = Point3D(0, 0, 0)
    p2 = Point3D(1, 1, 1)
    p3 = Point3D(x1, x1, x1)
    p4 = Point3D(y1, y1, y1)
    p5 = Point3D(x1, 1 + x1, 1)
    p6 = Point3D(1, 0, 1)

    l1 = Line3D(p1, p2)
    l2 = Line3D(p3, p4)
    l3 = Line3D(p3, p5)
    pytest.raises(ValueError,
                  lambda: Line3D(Point3D(0, 0, 0), Point3D(0, 0, 0)))

    assert Line3D((1, 1, 1), direction_ratio=[2, 3, 4]) == \
        Line3D(Point3D(1, 1, 1), Point3D(3, 4, 5))
    assert Line3D((1, 1, 1), direction_ratio=[1, 5, 7 ]) == \
        Line3D(Point3D(1, 1, 1), Point3D(2, 6, 8))
    assert Line3D((1, 1, 1), direction_ratio=[1, 2, 3]) == \
        Line3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
    pytest.raises(TypeError, lambda: Line3D((1, 1), 1))
    assert Line3D(p1, p2) != Line3D(p2, p1)
    assert l1 != l3
    assert l1.is_parallel(l1)  # same as in 2D
    assert l1 != l2
    assert l1.direction_ratio == [1, 1, 1]
    assert l1.length == oo
    assert l1.equation() == (x, y, z, k)
    assert l2.equation() == \
        ((x - x1)/(-x1 + y1), (-x1 + y)/(-x1 + y1), (-x1 + z)/(-x1 + y1), k)
    assert p1 in l1
    assert p1 not in l3

    # Orthogonality
    p1_1 = Point3D(x1, x1, x1)
    l1_1 = Line3D(p1, p1_1)
    assert Line3D.is_perpendicular(l1, l2) is False
    p = l1.arbitrary_point()
    pytest.raises(NotImplementedError, lambda: l1.perpendicular_segment(p))

    # Parallelity
    assert l1.parallel_line(p1_1) == Line3D(Point3D(x1, x1, x1),
                                            Point3D(x1 + 1, x1 + 1, x1 + 1))
    assert l1.parallel_line(p1_1.args) == \
        Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l1.parallel_line(p1)) == [
        Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
    ]
    # issue sympy/sympy#8517
    line3 = Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1))
    line4 = Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))
    assert line3.intersection(line4) == [Point3D(2, 2, 1)]
    assert line3.is_parallel(line4) is False
    assert Line3D((0, 1, 2),
                  (0, 2, 3)).intersection(Line3D((0, 1, 2), (0, 1, 1))) == []
    ray0 = Ray3D((0, 0), (3, 0))
    ray1 = Ray3D((1, 0), (3, 0))
    assert ray0.intersection(ray1) == [ray1]
    assert ray1.intersection(ray0) == [ray1]
    assert Segment3D((0, 0), (3, 0)).intersection(Segment3D(
        (1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((1, 0), (2, 0)).intersection(Segment3D(
        (0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(Segment3D(
        (3, 0), (4, 0))) == [Point3D((3, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(Segment3D(
        (2, 0), (5, 0))) == [Segment3D((3, 0), (2, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(Segment3D(
        (-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(Segment3D(
        (-2, 0), (0, 0))) == [Point3D(0, 0, 0)]
    # issue sympy/sympy#7757
    p = Ray3D(Point3D(1, 0, 0), Point3D(-1, 0, 0))
    q = Ray3D(Point3D(0, 1, 0), Point3D(0, -1, 0))
    assert intersection(p, q) == [Point3D(0, 0, 0)]

    # Concurrency
    assert Line3D.are_concurrent(l1) is False
    assert Line3D.are_concurrent(l1, l2)
    assert Line3D.are_concurrent(l1, l1_1, l3) is False
    parallel_1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
    parallel_2 = Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))
    assert Line3D.are_concurrent(parallel_1, parallel_2) is False

    # Finding angles
    l1_1 = Line3D(p1, Point3D(5, 0, 0))
    assert Line3D.angle_between(l1, l1_1), acos(sqrt(3) / 3)

    # Testing Rays and Segments (very similar to Lines)
    assert Ray3D((1, 1, 1), direction_ratio=[4, 4, 4]) == \
        Ray3D(Point3D(1, 1, 1), Point3D(5, 5, 5))
    assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]) == \
        Ray3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
    assert Ray3D((1, 1, 1), direction_ratio=[1, 1, 1]) == \
        Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))

    r1 = Ray3D(p1, Point3D(-1, 5, 0))
    r2 = Ray3D(p1, Point3D(-1, 1, 1))
    r3 = Ray3D(p1, p2)
    r5 = Ray3D(Point3D(0, 1, 1), Point3D(1, 2, 0))
    assert l1.projection(r1) == [
        Ray3D(Point3D(0, 0, 0), Point3D(4 / 3, 4 / 3, 4 / 3))
    ]
    assert l1.projection(r2) == [
        Ray3D(Point3D(0, 0, 0), Point3D(1 / 3, 1 / 3, 1 / 3))
    ]
    assert r3 != r1
    t = Symbol('t', extended_real=True)
    assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]).arbitrary_point() == \
        Point3D(t + 1, 2*t + 1, 3*t + 1)
    r6 = Ray3D(Point3D(0, 0, 0), Point3D(0, 4, 0))
    r7 = Ray3D(Point3D(0, 1, 1), Point3D(0, -1, 1))
    assert r6.intersection(r7) == []

    s1 = Segment3D(p1, p2)
    s2 = Segment3D(p3, p4)
    assert s1.midpoint == \
        Point3D(Rational(1, 2), Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt(3) * sqrt((x1 - y1)**2)
    assert Segment3D((1, 1, 1), (2, 3, 4)).arbitrary_point() == \
        Point3D(t + 1, 2*t + 1, 3*t + 1)

    # Segment contains
    s = Segment3D((0, 1, 0), (0, 1, 0))
    assert Point3D(0, 1, 0) in s
    s = Segment3D((1, 0, 0), (1, 0, 0))
    assert Point3D(1, 0, 0) in s

    # Testing distance from a Segment to an object
    s1 = Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
    s2 = Segment3D(Point3D(1 / 2, 1 / 2, 1 / 2), Point3D(1, 0, 1))
    pt1 = Point3D(0, 0, 0)
    pt2 = Point3D(Rational(3, 2), Rational(3, 2), Rational(3, 2))
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == sqrt(3) / 2
    assert s2.distance(pt2) == 2
    assert s1.distance((0, 0, 0)) == 0
    assert s2.distance((0, 0, 0)) == sqrt(3) / 2
    # Line to point
    p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
    s = Line3D(p1, p2)
    assert s.distance(Point3D(-1, 1, 1)) == 2 * sqrt(6) / 3
    assert s.distance(Point3D(1, -1, 1)) == 2 * sqrt(6) / 3
    assert s.distance(Point3D(2, 2, 2)) == 0
    assert s.distance((2, 2, 2)) == 0
    assert s.distance((1, -1, 1)) == 2 * sqrt(6) / 3
    assert Line3D((0, 0, 0), (0, 1, 0)).distance(p1) == 0
    assert Line3D((0, 0, 0), (0, 1, 0)).distance(p2) == sqrt(2)
    assert Line3D((0, 0, 0), (1, 0, 0)).distance(p1) == 0
    assert Line3D((0, 0, 0), (1, 0, 0)).distance(p2) == sqrt(2)
    # Ray to point
    r = Ray3D(p1, p2)
    assert r.distance(Point3D(-1, -1, -1)) == sqrt(3)
    assert r.distance(Point3D(1, 1, 1)) == 0
    assert r.distance((-1, -1, -1)) == sqrt(3)
    assert r.distance((1, 1, 1)) == 0
    assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, 3, 1)) == \
        sqrt(17)/2

    # Special cases of projection and intersection
    r1 = Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
    r2 = Ray3D(Point3D(2, 2, 2), Point3D(0, 0, 0))
    r3 = Ray3D(Point3D(1, 1, 1), Point3D(-1, -1, -1))
    assert intersection(r1, r2) == \
        [Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
    assert intersection(r1, r3) == [Point3D(1, 1, 1)]

    r5 = Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
    r6 = Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment3D(Point3D(0, 0, 0), Point3D(2, 2, 2))
    s2 = Segment3D(Point3D(-1, 5, 2), Point3D(-5, -10, 0))
    assert intersection(r1,
                        s1) == [Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]

    l1 = Line3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
    r1 = Ray3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
    s1 = Segment3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, r1) == [s1]

    # check that temporary symbol is Dummy
    assert Line3D((0, 0), (t, t)).perpendicular_line((0, 1)) == \
        Line3D(Point3D(0, 1, 0), Point3D(1/2, 1/2, 0))
    assert Line3D((0, 0), (t, t)).perpendicular_segment((0, 1)) == \
        Segment3D(Point3D(0, 1, 0), Point3D(1/2, 1/2, 0))
    assert Line3D((0, 0), (t, t)).intersection(Line3D((0, 1), (t, t))) == \
        [Point3D(t, t, 0)]
    assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z))

    # Test is_perpendicular
    perp_1 = Line3D(p1, Point3D(0, 1, 0))
    assert Line3D.is_perpendicular(parallel_1, perp_1) is True
    assert Line3D.is_perpendicular(parallel_1, parallel_2) is False

    # Test projection
    assert parallel_1.projection(Point3D(5, 5, 0)) == Point3D(5, 0, 0)
    assert parallel_1.projection(parallel_2) == [parallel_1]
    pytest.raises(GeometryError,
                  lambda: parallel_1.projection(Plane(p1, p2, p6)))

    # Test __new__
    assert Line3D(perp_1) == perp_1
    pytest.raises(ValueError, lambda: Line3D(p1))

    # Test contains
    pt2d = Point(1.0, 1.0)
    assert perp_1.contains(pt2d) is False

    # Test equals
    assert perp_1.equals(pt2d) is False
    col1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
    col2 = Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))
    assert col1.equals(col2) is True
    assert col1.equals(perp_1) is False

    # Begin ray
    # Test __new__
    assert Ray3D(col1) == Ray3D(p1, Point3D(1, 0, 0))
    pytest.raises(ValueError, lambda: Ray3D(pt2d))

    # Test zdirection
    negz = Ray3D(p1, Point3D(0, 0, -1))
    assert negz.zdirection == -oo

    # Test contains
    assert negz.contains(Segment3D(p1, Point3D(0, 0, -10))) is True
    assert negz.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2,
                                                             2))) is False
    posy = Ray3D(p1, Point3D(0, 1, 0))
    posz = Ray3D(p1, Point3D(0, 0, 1))
    assert posy.contains(p1) is True
    assert posz.contains(p1) is True
    assert posz.contains(pt2d) is False
    ray1 = Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0))
    pytest.raises(TypeError, lambda: ray1.contains([]))

    # Test equals
    assert negz.equals(pt2d) is False
    assert negz.equals(negz) is True

    assert ray1.is_similar(Line3D(Point3D(1, 1, 1), Point3D(1, 0, 0))) is True
    assert ray1.is_similar(perp_1) is False
    pytest.raises(NotImplementedError, lambda: ray1.is_similar(ray1))

    # Begin Segment
    seg1 = Segment3D(p1, Point3D(1, 0, 0))
    pytest.raises(TypeError, lambda: seg1.contains([]))
    seg2 = Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))
    assert seg1.contains(seg2) is False
Beispiel #7
0
def test_ellipse_geom():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)

    l1 = Line(p1, p2)

    pytest.raises(ValueError, lambda: Ellipse(Point3D(0, 0, 0), 1, 1))
    pytest.raises(ValueError, lambda: e3.arbitrary_point(y1))

    assert e1.ambient_dimension == 2

    # Test creation with three points
    cen, rad = Point(3 * half, 2), 5 * half
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    pytest.raises(GeometryError,
                  lambda: Circle(Point(0, 0), Point(1, 1), Point(2, 2)))

    pytest.raises(ValueError, lambda: Ellipse(None, None, None, 1))
    pytest.raises(GeometryError, lambda: Circle(Point(0, 0)))

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert e1 != l1  # issue sympy/sympy#12303
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi / 2
    assert e3.area == pi * y1 * abs(y1)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2 * pi * y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
    assert Ellipse(None, 1, None, 1).circumference == 2 * pi
    assert c1.minor == 1
    assert c1.major == 1
    assert c1.hradius == 1
    assert c1.vradius == 1

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) is False

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(Line(p1, p2)) is False
    assert e1.encloses(Ray(p1, p2)) is False
    assert e1.encloses(e1) is False
    assert e1.encloses(
        Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) is False

    # with generic symbols, the hradius is assumed to contain the major radius
    M = Symbol('M')
    m = Symbol('m')
    c = Ellipse(p1, M, m).circumference
    _x = c.atoms(Dummy).pop()
    assert c == 4 * M * Integral(
        sqrt((1 - _x**2 * (M**2 - m**2) / M**2) / (1 - _x**2)), (_x, 0, 1))

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [
        Line(Point(3 / 2, 1), Point(3 / 2, 1 / 2))
    ]
    assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(5 / 4, 2))]
    assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
    assert c1.tangent_lines(p1) == []
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
    assert c1.is_tangent(e1) is False
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, -1), Point(2,
                                                                  0))) is True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, 0), Point(2,
                                                                 0))) is False
    assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(77/25, 132/25)),
         Line(Point(0, 0), Point(33/5, 22/5))]
    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
        [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
        [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
        [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
         Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]

    e = Ellipse(Point(0, 0), 2, 1)
    assert e.normal_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines(Point(1, 0)) == \
        [Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines((0, 1)) == \
        [Line(Point(0, 0), Point(0, 1))]
    assert e.normal_lines(Point(1, 1), 2) == [
        Line(Point(-51 / 26, -1 / 5), Point(-25 / 26, 17 / 83)),
        Line(Point(28 / 29, -7 / 8), Point(57 / 29, -9 / 2))
    ]
    # test the failure of Poly.intervals and checks a point on the boundary
    p = Point(sqrt(3), Rational(1, 2))
    assert p in e
    assert e.normal_lines(p, 2) == [
        Line(Point(-341 / 171, -1 / 13), Point(-170 / 171, 5 / 64)),
        Line(Point(26 / 15, -1 / 2), Point(41 / 15, -43 / 26))
    ]
    # be sure to use the slope that isn't undefined on boundary
    e = Ellipse((0, 0), 2, 2 * sqrt(3) / 3)
    assert e.normal_lines((1, 1), 2) == [
        Line(Point(-64 / 33, -20 / 71), Point(-31 / 33, 2 / 13)),
        Line(Point(1, -1), Point(2, -4))
    ]
    # general ellipse fails except under certain conditions
    e = Ellipse((0, 0), x, 1)
    assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))]
    pytest.raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1)))

    # Properties
    major = 3
    minor = 1
    e4 = Ellipse(p2, minor, major)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major * (1 - ecc)
    assert e4.apoapsis == major * (1 + ecc)
    # independent of orientation
    e4 = Ellipse(p2, major, minor)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major * (1 - ecc)
    assert e4.apoapsis == major * (1 + ecc)

    # Intersection
    l1 = Line(Point(1, -5), Point(1, 5))
    l2 = Line(Point(-5, -1), Point(5, -1))
    l3 = Line(Point(-1, -1), Point(1, 1))
    l4 = Line(Point(-10, 0), Point(0, 10))
    pts_c1_l3 = [
        Point(sqrt(2) / 2,
              sqrt(2) / 2),
        Point(-sqrt(2) / 2, -sqrt(2) / 2)
    ]

    assert intersection(e2, l4) == []
    assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
    assert intersection(c1, l1) == [Point(1, 0)]
    assert intersection(c1, l2) == [Point(0, -1)]
    assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
    assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
    assert intersection(c1, c3) == [Point(sqrt(2) / 2, sqrt(2) / 2)]
    assert e1.intersection(l1) == [Point(1, 0)]
    assert e2.intersection(l4) == []
    assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
    assert e1.intersection(Circle(Point(5, 0), 1)) == []
    assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
    assert e1.intersection(Ellipse(
        Point(5, 0),
        1,
        1,
    )) == []
    assert e1.intersection(Point(2, 0)) == []
    assert e1.intersection(e1) == e1

    # some special case intersections
    csmall = Circle(p1, 3)
    cbig = Circle(p1, 5)
    cout = Circle(Point(5, 5), 1)
    # one circle inside of another
    assert csmall.intersection(cbig) == []
    # separate circles
    assert csmall.intersection(cout) == []
    # coincident circles
    assert csmall.intersection(csmall) == csmall

    v = sqrt(2)
    t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
    points = intersection(t1, c1)
    assert len(points) == 4
    assert Point(0, 1) in points
    assert Point(0, -1) in points
    assert Point(v / 2, v / 2) in points
    assert Point(v / 2, -v / 2) in points

    circ = Circle(Point(0, 0), 5)
    elip = Ellipse(Point(0, 0), 5, 20)
    assert intersection(circ, elip) in \
        [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
    assert elip.tangent_lines(Point(0, 0)) == []
    elip = Ellipse(Point(0, 0), 3, 2)
    assert elip.tangent_lines(Point(3, 0)) == \
        [Line(Point(3, 0), Point(3, -12))]

    e1 = Ellipse(Point(0, 0), 5, 10)
    e2 = Ellipse(Point(2, 1), 4, 8)
    a = 53 / 17
    c = 2 * sqrt(3991) / 17
    ans = [Point(a - c / 8, a / 2 + c), Point(a + c / 8, a / 2 - c)]
    assert e1.intersection(e2) == ans
    e2 = Ellipse(Point(x, y), 4, 8)
    c = sqrt(3991)
    ans = [
        Point(-c / 68 + a, 2 * c / 17 + a / 2),
        Point(c / 68 + a, -2 * c / 17 + a / 2)
    ]
    assert [p.subs({x: 2, y: 1}) for p in e1.intersection(e2)] == ans

    # Combinations of above
    assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])

    e = Ellipse((1, 2), 3, 2)
    assert e.tangent_lines(Point(10, 0)) == \
        [Line(Point(10, 0), Point(1, 0)),
         Line(Point(10, 0), Point(14/5, 18/5))]

    # encloses_point
    e = Ellipse((0, 0), 1, 2)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(e.center +
                            Point(e.hradius + Rational(1, 10), 0)) is False
    e = Ellipse((0, 0), 2, 1)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(e.center +
                            Point(e.hradius + Rational(1, 10), 0)) is False
    assert c1.encloses_point(Point(1, 0)) is False
    assert c1.encloses_point(Point(0.3, 0.4)) is True

    assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
    assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
    assert e.rotate(pi) == e
    assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1)
    pytest.raises(NotImplementedError, lambda: e.rotate(pi / 3))

    # Circle rotation tests (issue sympy/sympy#11743)
    cir = Circle(Point(1, 0), 1)
    assert cir.rotate(pi / 2) == Circle(Point(0, 1), 1)
    assert cir.rotate(pi / 3) == Circle(Point(Rational(1, 2), sqrt(3) / 2), 1)
    assert cir.rotate(pi / 3, Point(1, 0)) == Circle(Point(1, 0), 1)
    assert cir.rotate(pi / 3, Point(0, 1)) == Circle(
        Point(Rational(1, 2) + sqrt(3) / 2,
              Rational(1, 2) + sqrt(3) / 2), 1)

    # transformations
    c = Circle((1, 1), 2)
    assert c.scale(-1) == Circle((-1, 1), 2)
    assert c.scale(y=-1) == Circle((1, -1), 2)
    assert c.scale(2) == Ellipse((2, 1), 4, 2)

    e1 = Ellipse(Point(1, 0), 3, 2)
    assert (e1.evolute() == root(4, 3) * y**Rational(2, 3) +
            (3 * x - 3)**Rational(2, 3) - root(25, 3))

    e1 = Ellipse(Point(0, 0), 3, 2)
    p1 = e1.random_point(seed=0)
    assert p1.evalf(2) == Point(2.0664, 1.4492)

    assert Ellipse((1, 0), 2, 1).rotate(pi / 2) == Ellipse(Point(0, 1), 1, 2)
Beispiel #8
0
def test_plane2():
    p1 = Plane(Point3D(0, 0, 0), normal_vector=(1, 0, 0))
    p2 = Plane(Point3D(0, 0, 0), normal_vector=(1, 0, -1))
    assert p1.intersection(p2) == [Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))]

    p1 = Plane(Point3D(0, 0, 1), normal_vector=(0, -5, 3))
    p2 = Plane(Point3D(0, 0, 2), normal_vector=(0, -5, -3))
    assert p1.intersection(p2) == [
        Line3D(Point3D(0, 3 / 10, 3 / 2), Point3D(30, 3 / 10, 3 / 2))
    ]

    p1 = Point3D(0, 0, 0)
    p2 = Point3D(1, 1, 1)
    p3 = Point3D(1, 2, 3)
    pl3 = Plane(p1, p2, p3)
    # get a segment that does not intersect the plane which is also
    # parallel to pl3's normal veector
    t = Dummy()
    r = pl3.random_point()
    a = pl3.perpendicular_line(r).arbitrary_point(t)
    s = Segment3D(a.subs(t, 1), a.subs(t, 2))
    assert s.p1 not in pl3 and s.p2 not in pl3
Beispiel #9
0
def test_plane2():
    p1 = Plane(Point3D(0, 0, 0), normal_vector=(1, 0, 0))
    p2 = Plane(Point3D(0, 0, 0), normal_vector=(1, 0, -1))
    assert p1.intersection(p2) == [Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))]

    p1 = Plane(Point3D(0, 0, 1), normal_vector=(0, -5, 3))
    p2 = Plane(Point3D(0, 0, 2), normal_vector=(0, -5, -3))
    assert p1.intersection(p2) == [
        Line3D(Point3D(0, 3 / 10, 3 / 2), Point3D(30, 3 / 10, 3 / 2))
    ]

    p1 = Point3D(0, 0, 0)
    p2 = Point3D(1, 1, 1)
    p3 = Point3D(1, 2, 3)
    pl3 = Plane(p1, p2, p3)
    # get a segment that does not intersect the plane which is also
    # parallel to pl3's normal veector
    t = Dummy()
    r = pl3.random_point()
    a = pl3.perpendicular_line(r).arbitrary_point(t)
    s = Segment3D(a.subs({t: 1}), a.subs({t: 2}))
    assert s.p1 not in pl3 and s.p2 not in pl3

    a = Plane(Point3D(5, 0, 0), normal_vector=(1, -1, 1))
    b = Plane(Point3D(0, -2, 0), normal_vector=(3, 1, 1))
    c = Plane(Point3D(0, -1, 0), normal_vector=(5, -1, 9))
    assert Plane.are_concurrent(a, b) is True
    assert Plane.are_concurrent(a, b, c) is False

    p = Plane((0, 0, 0), (0, 0, 1), (0, 1, 0))
    assert p.arbitrary_point(t) == Point3D(0, cos(t), sin(t))
Beispiel #10
0
def test_sympyissue_9214():
    p1 = Point3D(4, -2, 6)
    p2 = Point3D(1, 2, 3)
    p3 = Point3D(7, 2, 3)

    assert Point3D.are_collinear(p1, p2, p3) is False