Beispiel #1
0
def _dmp_simplify_gcd(f, g, u, K):
    """Try to eliminate `x_0` from GCD computation in `K[X]`. """
    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if df > 0 and dg > 0:
        return

    if not (df or dg):
        F = dmp_LC(f, K)
        G = dmp_LC(g, K)
    else:
        if not df:
            F = dmp_LC(f, K)
            G = dmp_content(g, u, K)
        else:
            F = dmp_content(f, u, K)
            G = dmp_LC(g, K)

    v = u - 1
    h = dmp_gcd(F, G, v, K)

    cff = [dmp_quo(cf, h, v, K) for cf in f]
    cfg = [dmp_quo(cg, h, v, K) for cg in g]

    return [h], cff, cfg
Beispiel #2
0
def dmp_sqf_part(f, u, K):
    """
    Returns square-free part of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_sqf_part(x**3 + 2*x**2*y + x*y**2)
    x**2 + x*y

    """
    if not u:
        return dup_sqf_part(f, K)

    if K.is_FiniteField:
        return dmp_gf_sqf_part(f, u, K)

    if dmp_zero_p(f, u):
        return f

    if K.is_negative(dmp_ground_LC(f, u, K)):
        f = dmp_neg(f, u, K)

    gcd = dmp_gcd(f, dmp_diff(f, 1, u, K), u, K)
    sqf = dmp_quo(f, gcd, u, K)

    if K.has_Field:
        return dmp_ground_monic(sqf, u, K)
    else:
        return dmp_ground_primitive(sqf, u, K)[1]
Beispiel #3
0
def dmp_discriminant(f, u, K):
    """
    Computes discriminant of a polynomial in `K[X]`.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ
    >>> R, x,y,z,t = ring("x,y,z,t", ZZ)

    >>> R.dmp_discriminant(x**2*y + x*z + t)
    -4*y*t + z**2
    """
    if not u:
        return dup_discriminant(f, K)

    d, v = dmp_degree(f, u), u - 1

    if d <= 0:
        return dmp_zero(v)
    else:
        s = (-1)**((d * (d - 1)) // 2)
        c = dmp_LC(f, K)

        r = dmp_resultant(f, dmp_diff(f, 1, u, K), u, K)
        c = dmp_mul_ground(c, K(s), v, K)

        return dmp_quo(r, c, v, K)
Beispiel #4
0
def dmp_rr_lcm(f, g, u, K):
    """
    Computes polynomial LCM over a ring in `K[X]`.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ
    >>> R, x,y, = ring("x,y", ZZ)

    >>> f = x**2 + 2*x*y + y**2
    >>> g = x**2 + x*y

    >>> R.dmp_rr_lcm(f, g)
    x**3 + 2*x**2*y + x*y**2

    """
    fc, f = dmp_ground_primitive(f, u, K)
    gc, g = dmp_ground_primitive(g, u, K)

    c = K.lcm(fc, gc)

    h = dmp_quo(dmp_mul(f, g, u, K), dmp_gcd(f, g, u, K), u, K)

    return dmp_mul_ground(h, c, u, K)
Beispiel #5
0
def test_dmp_div():
    f, g, q, r = [5, 4, 3, 2, 1], [1, 2, 3], [5, -6, 0], [20, 1]

    assert dmp_div(f, g, 0, ZZ) == (q, r)
    assert dmp_quo(f, g, 0, ZZ) == q
    assert dmp_rem(f, g, 0, ZZ) == r

    pytest.raises(ExactQuotientFailed, lambda: dmp_exquo(f, g, 0, ZZ))

    f, g, q, r = [[[1]]], [[[2]], [1]], [[[]]], [[[1]]]

    assert dmp_div(f, g, 2, ZZ) == (q, r)
    assert dmp_quo(f, g, 2, ZZ) == q
    assert dmp_rem(f, g, 2, ZZ) == r

    pytest.raises(ExactQuotientFailed, lambda: dmp_exquo(f, g, 2, ZZ))
Beispiel #6
0
def dmp_rr_prs_gcd(f, g, u, K):
    """
    Computes polynomial GCD using subresultants over a ring.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ
    >>> R, x,y, = ring("x,y", ZZ)

    >>> f = x**2 + 2*x*y + y**2
    >>> g = x**2 + x*y

    >>> R.dmp_rr_prs_gcd(f, g)
    (x + y, x + y, x)

    """
    if not u:
        return dup_rr_prs_gcd(f, g, K)

    result = _dmp_rr_trivial_gcd(f, g, u, K)

    if result is not None:
        return result

    fc, F = dmp_primitive(f, u, K)
    gc, G = dmp_primitive(g, u, K)

    h = dmp_subresultants(F, G, u, K)[-1]
    c, _, _ = dmp_rr_prs_gcd(fc, gc, u - 1, K)

    if K.is_negative(dmp_ground_LC(h, u, K)):
        h = dmp_neg(h, u, K)

    _, h = dmp_primitive(h, u, K)
    h = dmp_mul_term(h, c, 0, u, K)

    cff = dmp_quo(f, h, u, K)
    cfg = dmp_quo(g, h, u, K)

    return h, cff, cfg
Beispiel #7
0
def dmp_ff_prs_gcd(f, g, u, K):
    """
    Computes polynomial GCD using subresultants over a field.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from diofant.polys import ring, QQ
    >>> R, x,y, = ring("x,y", QQ)

    >>> f = QQ(1,2)*x**2 + x*y + QQ(1,2)*y**2
    >>> g = x**2 + x*y

    >>> R.dmp_ff_prs_gcd(f, g)
    (x + y, 1/2*x + 1/2*y, x)

    """
    if not u:
        return dup_ff_prs_gcd(f, g, K)

    result = _dmp_ff_trivial_gcd(f, g, u, K)

    if result is not None:
        return result

    fc, F = dmp_primitive(f, u, K)
    gc, G = dmp_primitive(g, u, K)

    h = dmp_subresultants(F, G, u, K)[-1]
    c, _, _ = dmp_ff_prs_gcd(fc, gc, u - 1, K)

    _, h = dmp_primitive(h, u, K)
    h = dmp_mul_term(h, c, 0, u, K)
    h = dmp_ground_monic(h, u, K)

    cff = dmp_quo(f, h, u, K)
    cfg = dmp_quo(g, h, u, K)

    return h, cff, cfg
Beispiel #8
0
def dmp_primitive(f, u, K):
    """
    Returns multivariate content and a primitive polynomial.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ
    >>> R, x,y, = ring("x,y", ZZ)

    >>> R.dmp_primitive(2*x*y + 6*x + 4*y + 12)
    (2*y + 6, x + 2)

    """
    cont, v = dmp_content(f, u, K), u - 1

    if dmp_zero_p(f, u) or dmp_one_p(cont, v, K):
        return cont, f
    else:
        return cont, [dmp_quo(c, cont, v, K) for c in f]
Beispiel #9
0
def dmp_ff_lcm(f, g, u, K):
    """
    Computes polynomial LCM over a field in `K[X]`.

    Examples
    ========

    >>> from diofant.polys import ring, QQ
    >>> R, x,y, = ring("x,y", QQ)

    >>> f = QQ(1,4)*x**2 + x*y + y**2
    >>> g = QQ(1,2)*x**2 + x*y

    >>> R.dmp_ff_lcm(f, g)
    x**3 + 4*x**2*y + 4*x*y**2

    """
    h = dmp_quo(dmp_mul(f, g, u, K), dmp_gcd(f, g, u, K), u, K)

    return dmp_ground_monic(h, u, K)
Beispiel #10
0
def dmp_inner_subresultants(f, g, u, K):
    """
    Subresultant PRS algorithm in `K[X]`.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = 3*x**2*y - y**3 - 4
    >>> g = x**2 + x*y**3 - 9

    >>> a = 3*x*y**4 + y**3 - 27*y + 4
    >>> b = -3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16

    >>> prs = [f, g, a, b]
    >>> sres = [[1], [1], [3, 0, 0, 0, 0], [-3, 0, 0, -12, 1, 0, -54, 8, 729, -216, 16]]

    >>> R.dmp_inner_subresultants(f, g) == (prs, sres)
    True

    """
    if not u:
        return dup_inner_subresultants(f, g, K)

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    if n < m:
        f, g = g, f
        n, m = m, n

    if dmp_zero_p(f, u):
        return [], []

    v = u - 1
    if dmp_zero_p(g, u):
        return [f], [dmp_ground(K.one, v)]

    R = [f, g]
    d = n - m

    b = dmp_pow(dmp_ground(-K.one, v), d + 1, v, K)

    h = dmp_prem(f, g, u, K)
    h = dmp_mul_term(h, b, 0, u, K)

    lc = dmp_LC(g, K)
    c = dmp_pow(lc, d, v, K)

    S = [dmp_ground(K.one, v), c]
    c = dmp_neg(c, v, K)

    while not dmp_zero_p(h, u):
        k = dmp_degree(h, u)
        R.append(h)

        f, g, m, d = g, h, k, m - k

        b = dmp_mul(dmp_neg(lc, v, K), dmp_pow(c, d, v, K), v, K)

        h = dmp_prem(f, g, u, K)
        h = [dmp_quo(ch, b, v, K) for ch in h]

        lc = dmp_LC(g, K)

        if d > 1:
            p = dmp_pow(dmp_neg(lc, v, K), d, v, K)
            q = dmp_pow(c, d - 1, v, K)
            c = dmp_quo(p, q, v, K)
        else:
            c = dmp_neg(lc, v, K)

        S.append(dmp_neg(c, v, K))

    return R, S
Beispiel #11
0
def dmp_zz_diophantine(F, c, A, d, p, u, K):
    """Wang/EEZ: Solve multivariate Diophantine equations. """
    if not A:
        S = [[] for _ in F]
        n = dup_degree(c)

        for i, coeff in enumerate(c):
            if not coeff:
                continue

            T = dup_zz_diophantine(F, n - i, p, K)

            for j, (s, t) in enumerate(zip(S, T)):
                t = dup_mul_ground(t, coeff, K)
                S[j] = dup_trunc(dup_add(s, t, K), p, K)
    else:
        n = len(A)
        e = dmp_expand(F, u, K)

        a, A = A[-1], A[:-1]
        B, G = [], []

        for f in F:
            B.append(dmp_quo(e, f, u, K))
            G.append(dmp_eval_in(f, a, n, u, K))

        C = dmp_eval_in(c, a, n, u, K)

        v = u - 1

        S = dmp_zz_diophantine(G, C, A, d, p, v, K)
        S = [dmp_raise(s, 1, v, K) for s in S]

        for s, b in zip(S, B):
            c = dmp_sub_mul(c, s, b, u, K)

        c = dmp_ground_trunc(c, p, u, K)

        m = dmp_nest([K.one, -a], n, K)
        M = dmp_one(n, K)

        for k in K.map(range(0, d)):
            if dmp_zero_p(c, u):
                break

            M = dmp_mul(M, m, u, K)
            C = dmp_diff_eval_in(c, k + 1, a, n, u, K)

            if not dmp_zero_p(C, v):
                C = dmp_quo_ground(C, K.factorial(k + 1), v, K)
                T = dmp_zz_diophantine(G, C, A, d, p, v, K)

                for i, t in enumerate(T):
                    T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K)

                for i, (s, t) in enumerate(zip(S, T)):
                    S[i] = dmp_add(s, t, u, K)

                for t, b in zip(T, B):
                    c = dmp_sub_mul(c, t, b, u, K)

                c = dmp_ground_trunc(c, p, u, K)

        S = [dmp_ground_trunc(s, p, u, K) for s in S]

    return S